35th Rencontres de Blois 2024

Current status of direct dark matter searches with XENONnT

Jaron Grigat on behalf of the XENON collaboration

Bundesministerium für Bildung und Forschung

23.10.2024, Jaron Grigat, jaron.grigat@physik.uni-freiburg.de

XENON Collaboration

~200 Scientists 29 Institutions around the world

XENONnT Experiment

- Located at the INFN Laboratory Nazionali del Gran Sasso (LNGS) in Italy
- Main science channel: search for nuclear recoils (NRs) created by Weakly Interacting Massive Particles (WIMPs)
- Three nested detectors:

Xenon dual-phase **Time Projection Chamber** (TPC)

Neutron Veto (Gd-salted) Water Cherenkov detector

700 t Water tank Passive shielding

Muon Veto Water Cherenkov detector

Time Projection Chamber (TPC)

ER vs. NR discrimination

ER background

- ER leakage into signal region \rightarrow keep total ERs as low as possible
- ER spectrum in WIMP ROI dominated by ²¹⁴Pb β-decays to ground state
- Reduced by
 - A. Careful selection of low-bkg. construction materials Eur. Phys. J. C 82, 599 (2022)

- Factor ~5x compared to XENON1T
- Another factor **2.3x** reduction in ²²²Rn activity in upcoming searches! \bullet

Unprecedented low ER background at (15 \pm 1.3) (t \cdot y \cdot keV)⁻¹ in the (1, 30) keV search region

ER Results

- No significant excess over background found
- World leading limits on several New Physics models

Search for New Physics in Electronic Recoil Data Phys. Rev. Lett. 129, 161805 (2022)

Surface Background

- loss

NR Background

- Dominated by neutrons
- Reduced by
 - A. Material Selection
 - B. Fiducial Volume Cut
 - C. Single Scatter Cut
 - **D. Neutron Veto**

11

Neutron Veto

- Neutron capture inside veto subsequently creates Cherenkov light
- 120 8" PMTs inside enclosure of reflective panels
- Tagging efficiency 53% with pure water
- Since fall 2023: added Gadolinium salt to water tank (0.02% concentration of Gd) → ~77% tagging efficiency
- End goal: ~0.2% Gd concentration
 →~90% tagging efficiency

Neutron Veto

- Neutron capture inside veto subsequently creates Cherenkov light
- 120 8" PMTs inside enclosure of reflective panels
- Tagging efficiency 53% with pure water
- Since fall 2023: added Gadolinium salt to water tank (0.02% concentration of Gd) → ~77% tagging efficiency
- End goal: ~0.2% Gd concentration
 →~90% tagging efficiency

Accidental Coincidence (AC) Background

- Accidental pairing of isolated S1s and S2s within max. drift time window
- Reduced by multiple analysis cuts

More details in Dacheng Xu's talk Tomorrow 16:35

First Indication of Solar ⁸B Neutrinos via

Coherent Elastic Neutrino-Nucleus Scattering with XENONnT

Status and Exposure

Jaron Grigat, 23.10.2024

WIMP results (SR0)

	Best Fit (200 GeV WIMP)
ER	135^{+12}_{-11}
Neutrons	1.1 ± 0.4
CEvNS	0.23 ± 0.06
AC	4.32 ± 0.16
Surface	12^{+0}_{-4}
Total Bkg.	152 ± 12
WIMP	2.6
Observed	152

No significant excess over background

Jaron Grigat, 23.10.2024

First Dark Matter Search with Nuclear Recoils Phys. Rev. Lett. 131, 041003 (**2023**)

16

WIMP results (SR0)

- Blind analysis
- Unbinned maximum likelihood fit
- 90% CL limits
- Power constrained limits (PCL) (solid lines, w/o: dashed lines)

First Dark Matter Search with Nuclear Recoils Phys. Rev. Lett. 131, 041003 (**2023**)

WIMP results (SR0)

- Blind analysis
- Unbinned maximum likelihood fit
- 90% CL limits
- Power constrained limits (PCL) (solid lines, w/o: dashed lines)
- Comparison to XENON1T and other published results (non-blind analyses)

First Dark Matter Search with Nuclear Recoils Phys. Rev. Lett. 131, 041003 (**2023**)

Light Dark Matter

- Threshold limits WIMP search for low masses
- S1 PMT coincidence requirement:

3-fold → 2-fold

• Search for [3,12] GeV WIMPs

→ Details on analysis in Dacheng Xu's talk Tomorrow 16:35 First Search for Light Dark Matter in the Neutrino Fog arXiv:2409.17868 (**2024**)

Light Dark Matter

	Best Fit (6 GeV DM particle)
ER	$0.5^{+0.6}_{-0.5}$
Neutrons	0.5 ± 0.3
CEvNS	$11.4^{+2.7}_{-2.6}$
AC	25.3 ± 1.2
Total Bkg.	$37.7^{+3.0}_{-2.9}$
SI DM	0.0
Observed	37

No significant excess over background

Jaron Grigat, 23.10.2024

First Search for Light Dark Matter in the Neutrino Fog arXiv:2409.17868 (**2024**)

Summary and Outlook

XENONnT

- total mass: **8.5 tonne** ultra pure liquid xenon
- Dual-phase Time Projection Chamber with **5.9 tonne** active target
- Several new systems including online radon removal and neutron veto

First Results (SR0)

- Blinded electronic recoil (ER) and nuclear recoil (NR) searches
- Lowest ER background in the field, ~5x background reduction w.r.t. XENON1T
- No significant excess over background found

21

Summary and Outlook

New Results (SR0+SR1)

- First Search for Light Dark Matter in the Neutrino Fog
- First Indication of Solar ⁸B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering

Prospects

- ~2x lower ²²²Rn level
- Improved neutron tagging by **Gd-loaded** neutron veto
- WIMP search with increased exposure in preparation
- Continue to accumulate data. Target exposure: 20 ($t \cdot y$)
- Beyond XENONnT? XLZD!

• Planning stage for detector with [40-60] t active LXe target

→ Dacheng Xu's talk, Tomorrow 16:35

 \rightarrow Maxime Pierre's talk: directly after this

