DARWIN **DARWIN: On the Path to the Ultimate** Liquid-xenon Astroparticle Observatory

Dr. Maxime Pierre

On behalf of DARWIN/XLZD maxime.pierre@nikhef.nl

Universiteit van Amsterdam

Ň

Nik hef

DARWIN WIMP search with Xenon

Noble gases Time Projection Chamber

• Leading sensitivity @ mass range O(10-1000) GeV

DARWIN WIMP search with Xenon

Noble gases Time Projection Chamber

- Leading sensitivity @ mass range O(10-1000) GeV
- Liquid Xenon (LXe) detectors advantages:

 - SI and SD (¹²⁹Xe, ¹³¹Xe) interactions

DARWIN XENON-LUX-ZEPLIN-DARWIN: XLZD

Towards the ultimate LXe detectors

- New collaboration uniting the strengths of major actors (72 institutions and 163 senior scientists)
 - XENONnT, LZ demonstrated experience in largescale LXe TPCs
 - DARWIN Large-scale demonstrators, R&D: electrodes, HV, photosensors,...

xlzd.org

DARWIN XENON-LUX-ZEPLIN-DARWIN: XLZD

Towards the ultimate LXe detectors

- New collaboration uniting the strengths of major actors (72 institutions and 163 senior scientists)
 - → XENONnT, LZ demonstrated experience in largescale LXe TPCs
 - DARWIN Large-scale demonstrators, R&D: electrodes, HV, photosensors,...

XLZD nominal design

- 60 t LXe TPC (~80 t total), early science with 40 t LXe
- 3" PMTs, 1182/array
- 2.98 m diameter, and 2.97 m electron drift (can vary [40, 80] t)
- Drift field: 240 290 V/vm; Extraction field: 6-8 kV/cm
- Double-walled low-background Ti cryostat + LXe "skin" surrounding the TPC

+ Passive and active muon and neutron shielding with gadolinium to enhance capture cross-section (ongoing) R&D with current generation of experiment)

Conceptual drawing of XLZD possible location at LNGS-Hall C, Adrian Schwenck, KIT

Dark Matter

WIMPs Sub-GeV Inelastic Axion-like particles Planck mass Dark photons

<u>Supernovae</u>

Early alert Supernova neutrinos Multi-messenger astrophysics

Neutrino nature

Neutrinoless double beta decay Neutrino magnetic moment Double electron capture

Physics Case JoPG, 50 013001 (2023)

pp neutrinos Solar metallicity ⁷Be, ⁸B, hep

DARWIN Science Goals

Simultaneously explore WIMP space down to the "neutrino fog" and search for neutrinoless double- β decay of ¹³⁶Xe

Design BookarXiv:2410.17137

- Drift/Extraction fields in a larger TPC
 - ➡ High-voltage delivery
 - Electrodes design/construction/test
 - Electric field homogeneity
- Liquid xenon purity
- Background mitigation (external/intrinsic)
- Light collection efficiency
- Photosensors performance

DARWIN Towards XLZD: DARWIN

The DARWIN Collaboration

- ~200 members from 35 institutions
- Established structure and active working groups \bigcirc
- Several large-scale demonstrators, as well as R&D setups

Rich R&D program to tackle these challenges

DARWIN Xenoscope at UZH

Vertical demonstrator

- Goals:
 - ➡ Electron drift over 2.6 m, ~400 kg of Xe
 - ➡ Electron cloud diffusion
 - ➡ Custom HV
 - Optical properties of Xe
- Phase 1: purity monitor
 - ➡ 53 cm single phase PM
 - Direct charge readout from electrodes

Phase 2: modular TPC

- ➡ 2.6 m dual-phase TPC
- Proportional scintillation light readout with a SiPM tiled array

PE/ns

Area: 57318.53 PE Length: 1.66 µs Position: 2.21 µs Amplitude: 61.30 PE/ns

DARWIN Pancake at Uni Freiburg

Full-scale Ø demonstrator

- Test components & concepts:
 - ➡ Test in: LXe, cold GXe, under HV
 - ➡ Probe: sagging, e⁻ emission, large-scale cooling
- 5 t stainless steel & double-walled cryostat with 380 kg of xenon
- Flat floor design and possibility of using open top vessel

JINST 19 (2024) P05018

)ARWIN Pancake at Uni Freiburg

Full-scale Ø demonstrator

- Test components & concepts: \bigcirc
 - → Test in: LXe, cold GXe, under HV
 - → **Probe**: sagging, e⁻ emission, large-scale cooling
- 5 t stainless steel & double-walled cryostat with 380 kg of xenon
- Flat floor design and possibility of using open top vessel
- Successfully commissioned \bigcirc
- Instrumented with PMTs & cameras \bigcirc
- **Next step:** test of electrodes and HV $oldsymbol{O}$ performances

Background mitigation

To reach background level v-dominated

- Selection of radio-pure materials with low Rn-emanation
 - ➡ Material screening
- Reduce Xe target contamination from impurities
 - ➡ Fast LXe recirculation with radon-free filters and pumps
- Removal of intrinsic background sources
 - → 85 Kr distillation → goal of 0.1 ppt natKr already achieved < 0.026 ppt
 - → 222 Rn distillation → goal of 0.1 µBq/kg (achieved 0.8) µBq/kg) below ER from solar pp neutrinos. ERC LowRad
 - Coating techniques against radon emanation (electrochemical deposition of Cu)
- Study & Mitigation of accidental coincidences sources
 - Random pairing of isolated S1 and S2 signals

Eur. Phys. J. C (2017) 77:275

Top condense Package tube Input condenser

Eur. Phys. J. C (2022) 82:1104

VULCAN setup: Measure optical properties of materials (Fluorescence, Cherenkov emission,...)

DARWIN Photosensors

Nominal design with PMTs

- Established technology, low dark count rate (~0.02 Hz/mm²), high QE (30-40%)
- Radiopurity improvement on 3" PMTs, but still contribute via several decay chains.
- Testing of Square 2" PMT, lower buoyancy and sub-ns rise time
- Characterisation of SPE response, dark counts, light emission, after pulsing
- R&D & Study of other photosensors

Eur. Phys. J. C (2015) **75**: 546

Hamamatsu R12699-406-M4

Electrodes & HV Supply

Efficiency and Robustness

- Electrical Field, optical & Mechanical simulations
 - Effects of electrode geometries on light collection efficiency
 - Mechanical design & stability; 2D/3D simulation studies
- Identification & Treatment of Features
 - Investigate stretching, sagging and flatness of meshes
 - Automatic feature detection with ML and repair with laser welding
 - Electrode surface treatment and coating
- 80 kg LXe TPC with multiple port access for diagnostic of HV components - up to -200 kV bias

DARWIN Summary

DARWIN - R&D efforts towards the ultimate LXe astroparticle observatory (XLZD)

- - ➡ Electric fields
 - ➡ Xenon purity
 - Photosensors
 - Background mitigation

XLZD (XENON-LZ-DARWIN): new international collaboration

- Aim to build & operate \geq 60t LXe TPC
- Explore WIMP parameter space down to the "neutrino fog"
- \bigcirc processes, and more...

Several large-scale demonstrators, as well as R&D setups to tackle the technical challenges:

Broad physics program with solar & Sn neutrinos, $0\nu\beta\beta$ -decay and other Double-Weak decay

Back-up

Precise measurements of electronic solar
neutrino survival probability and electroweak
mixing angle using pp neutrino

DARWIN $0\nu\beta\beta$ of ¹³⁶Xe Projection Sensitivity

Background consideration for different scenarios

- External bkg from screening \rightarrow Nominal
- x1/3 reduction factor \rightarrow Optimistic
- 137 Xe production at LNGS \rightarrow Nominal
- ¹³⁷Xe production at SURF \rightarrow Optimistic
- BiPo Tagging efficiency 99.95% → Nominal
- BiPo Tagging efficiency 99.99% → Optimistic
- Energy Resolution @ $Q_{\beta\beta}$: 0.65% \rightarrow Nominal
- Energy Resolution @ $Q_{\beta\beta}$: 0.60% \rightarrow Optimistic

DARWIN Other Photosensors

- 12x12 mm² MPPC of VUV4 SiPMs
 - ➡ Low radioactivity
 - ➡ Cheaper
 - ➡ Higher buoyancy
 - ➡ Higher dark count rate
- Digital SiPMs
 - ➡ Can turn off single pixels
 - Output already digitised
- LDC VUV SiPMs
- Hybrid sensors (Abalone,...)

48 12x12 mm² VUV4 MMPCs @ UZH

Map of DCR SPAD3

- Single phase TPC
 - Simplified TPC design, no liquid level control required
 - ➡ Reduce single electron emissions
- Hermetic TPC
 - Prevent radon impurity diffusion into inner volume
- 4π coverage with photosensors

JINST 16 P01018 (2021)

Eur. Phys. J. C (2023) 83:9

