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Understanding core collapse supernovae through DSNB 
 Diffuse Supernova Neutrino Background (DSNB): a nearly isotropic flux of neutrinos 

cumulatively originating from all past core-collapse supernovae
 Prediction: Core collapse supernova releases ~2 x 1059 MeV in neutrinos of all flavors in similar 

amounts
 Detecting DSNB is the only feasible way of probing average neutrino emission per core collapse 
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 DSNB flux for a single neutrino flavor:

Understanding core collapse supernovae through DSNB 

Phys. Rev. D 105, 043008 (2022)
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 DSNB flux for a single neutrino flavor:

 What we can learn from DSNB:
 fNS , fBH: Fraction of neutron star (NS) and black hole (BH)- forming progenitors 
 Nuclear equation of state
 Neutrino flavor evolution in the supernova
 Non-standard physics: Neutrino decay; DSNB interacting with cosmic relic neutrinos and 

dark matter 
 …

Understanding core collapse supernovae through DSNB 

Phys. Rev. D 105, 043008 (2022)
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 Understanding of core collapse depends on probing DSNB in all flavors
 Stringent limits have been set on �� ( 2.7 cm-2s-1 by Super-K) and �� (19 cm-2s-1 by 

SNO). Super-K is close to a first detection of  DSNB ��*
 Primary channel in Super-K:

 Primary channel in SNO: 

 
                                        
                                                                                    
          

Existing limits on DSNB 

Expected nuclear-recoil spectrum 
in an ideal Xe detector:
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 Understanding of core collapse depends on probing DSNB in all flavors
 Stringent limits have been set on �� ( 2.7 cm-2s-1 by Super-K) and �� (19 cm-2s-1 by 

SNO). Super-K is close to a first detection of  DSNB ��*
 Primary channel in Super-K:

 Primary channel in SNO: 

 Limits on �� (each of  ��, ��, ��,  ��) are weak ~103 cm-2s-1  
                                        
                                                                                    
          

Existing limits on DSNB 

Expected nuclear-recoil spectrum 
in an ideal Xe detector:
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 DSNB flux dominates other neutrino fluxes in a narrow energy range

Probing DSNB with Xenon Detectors

Expected nuclear-recoil spectrum 
in an ideal Xe detector:

Neutrino Flux

7

Atmospheric DSNB

Solar hep

Solar 8B



 DSNB flux dominates other neutrino fluxes in a narrow energy range
 Detection in xenon-based detectors is challenging

Probing DSNB with Xenon Detectors

Expected nuclear-recoil spectrum 
in an ideal Xe detector:

Neutrino Flux
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Neutrino CE�NS 
Spectra in Xe

Atmospheric DSNB

Solar hep

Solar 8B



 DSNB flux dominates other neutrino fluxes in a narrow energy range
 Detection in xenon-based detectors is challenging
 However, useful limits can be set on �� through the CE�NS channel in Xe

Probing DSNB with Xenon Detectors

Expected nuclear-recoil spectrum 
in an ideal Xe detector:

Neutrino Flux Neutrino CE�NS 
Spectra in Xe
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Sensitivity predictions by theorists (A. M. Suliga, J. Beacom & I. Tamborra): 

Phys. Rev. D 105, 043008 (2022)  



 SURF in Lead, South Dakota is the deepest underground lab in the U.S.
 LZ is located on the 4850 level ~1.5 km underground
 ~106 reduction in cosmic muon flux
 Primary goal is to detect WIMPs*

LZ @ Sanford Underground Research Facility
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*Refer to Albert’s talk for the latest LZ WIMP results
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Dual Phase Xenon Time Projection Chamber (TPC) 
 Signal vs. background discrimination

 Charge (S2)/ light (S1) ratio is 
different between electron recoil 
(ER) and nuclear recoil (NR)

 Electrons and gammas interact with 
atomic electrons, produce ER

 WIMPs, neutrinos (and neutrons) interact 
with Xe nuclei, produce NR

Electron Recoil

Nuclear Recoil
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Calibration Data 
 Dark blue points: Tritium beta data (ER)*  (continuum betas up to 18.6 keV)
 Orange points: DD neutron data (NR)* (2.45 MeV neutrons produced through 

Deuterium-Deuterium fusion)
 ER/NR discrimination: <0.5% ER leakage past the median of the NR population 

13*Details about calibration source deployment: LZ Collaboration, JINST 19 P08027 (2024)

LZ Collaboration, Phys. Rev. Lett. 131, 041002 (2023)
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LZ Science Run I (SR1) Data
(Dec. 2021 - May 2022)

 Exposure: 60 day x 5.5 t = 0.9 tonne-yr
 Black points: 335 events observed
 Shaded gray: best fit ER background 

model
 Purple curves: 1σ and 2σ contours of 

the DSNB signal
 Orange: Atmospheric neutrino NR
 Shaded green: 8B neutrino

LZ preliminary 

Atmospheric neutrino NR

DSNB signal



Limits on DSNB �� Flux
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 LZ SR1 limit on DSNB �� flux: 
    686 - 826 cm-2s-1 at 90% C.L. for neutrino 
    energy E > 19.3 MeV
 Blue: Projected sensitivity vs. livetime
 Green: DSNB model predicted flux
     *Error bar in black and band widths in blue 
      and green come from DSNB model uncertainties
 Comparable to SK limits**:

      **Lunardini and Peres, JCAP 08 033 (2008)

LZ SR1 limit on DSNB �� Flux

LZ preliminary 
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Limits on fundamental DSNB emission parameters

 Solid black: LZ SR1 limit on the total emitted 
energy per �� flavor ��� vs. average neutrino 
energy   ��� 

 Green and yellow band: 1σ and 2σ sensitivity 
bands 

 Three points indcate the average eimssion 
parameters in the fiducial, minimial and 
maximal DSNB models

LZ preliminary 



Summary and outlook
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 LZ can set competitive limit on DSNB �� through the CE�NS process
 LZ’s limit with an exposure of  0.9 tonne-yr is of the same order of 

magnitude as Super-K’s limit with 1496 days x 22.5 kton of exposure

 Future LZ data will improve the limit by more than a factor of 3

 The current limit do not restrict any existing DSNB model but can be useful in 
the future, e.g.,
 New astrophysical models where a larger neutron star or a black hole is 

formed ==> larger DSNB flux 
 New-physics models where neutrinos can escape more readily from the 

core of the proto-neutron star ==> larger mean neutrino energy 
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Thank you!
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Why not setting limits on the supernova rate density?

 The total supernova rate 
density is much better 
understood (to ~10% 
uncertainty) than the flux 
from individual supernova 
collapse (we know nearly 
nothing about)

https://api.semanticscholar.org/CorpusID:73652762 20
O. Graur et al 2014 ApJ 783 28
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LZ Science Run I Fit Results
LZ preliminary 


