

Physics prospects and detector design for a future multi-TeV muon collider

Antonello Pellecchia¹ on behalf of the International Muon Collider Collaboration

¹Istituto nazionale di fisica nucleare, sezione di Bari, Italy

35th Rencontres de Blois October 24th, 2024

and detector prospects

Muon collider physics

The case for a muon collider

QCD-charged (β=10)

25

30

A high-energy lepton collider: combining cutting edge discovery potential with precision measurements

Motivations

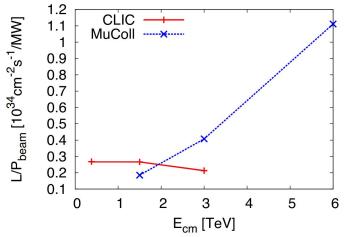
500

200 م آ

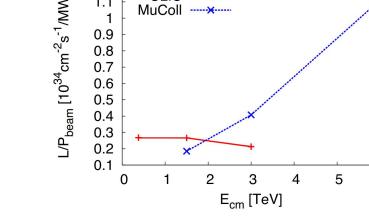
్ల 100

50

20


5

- No synchrotron radiation: higher energy reachable ٠ than e⁺e⁻
- Point-like particles: comparable physics reach at ٠ lower centre-of-mass than pp
- Good **luminosity** to beam power ratio: high s-channel cross sections at high energy


EW-only

Physics reach

- Potential for new **discoveries**
- Precise Higgs studies
- Direct reach for physics coupled to muons and neutrinos

Normalized luminosity achievable with CLIC and Muon collider

 $\sqrt{s_{\mu}}$ [TeV] Comparison between muon and proton collider energy at same production cross-section of heavy particles

15

20

Muon collider challenges

The muon lifetime is 2.2 μs

Short muon lifetime

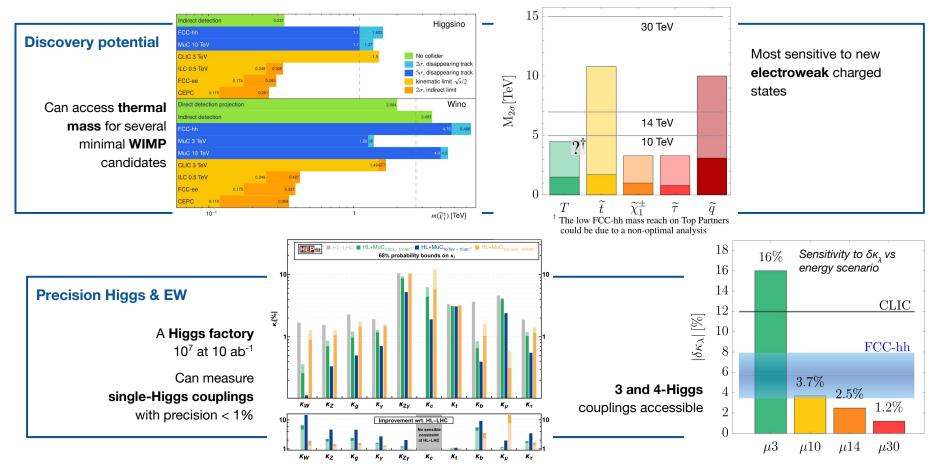
Requires fast production, cooling and acceleration

- Ionization cooling under study
- Rapid acceleration by linac + 2 recirculating linacs
- Difficult to maintain small β and energy spread

$\mu^{+} \qquad \mu^{+} \qquad \mu^{+} \qquad \mu^{+} \qquad e^{-}$ $\mu^{+} \qquad \mu^{-} \qquad \mu^{-} \qquad \mu^{-}$

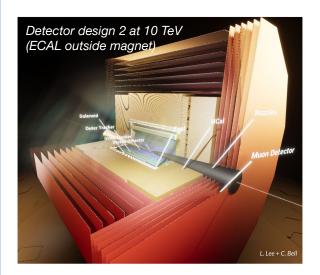
Muon decay

Asynchronous **beam-induced background** (BIB) in experiments


- 1. Mostly photons, neutrons and electrons
- 2. Incoherent e⁺e⁻ pairs produced at bunch crossing

Mitigation by shielding and choice of detector technologies

and detector prospects



Detector design for 3 and 10 TeV

Design constrained by

- BIB levels
- Machine design: focusing quadrupoles at ±6 m from IP
- Physics requirements: detector has to be sensitive to
 - Central objects from massive particle decays
 - \circ **Low-p_T** objects from standard model processes (e.g. Higgs decays)
 - Non-standard signatures (e.g. displaced vertices and jets)

Experiment requirements

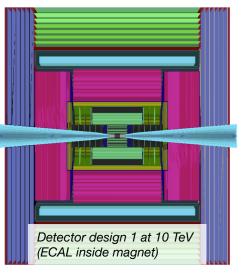
• Need **shielding** (nozzles) in forward region

Has effects on

detector design

detector technologies

software (e.g. reconstruction)

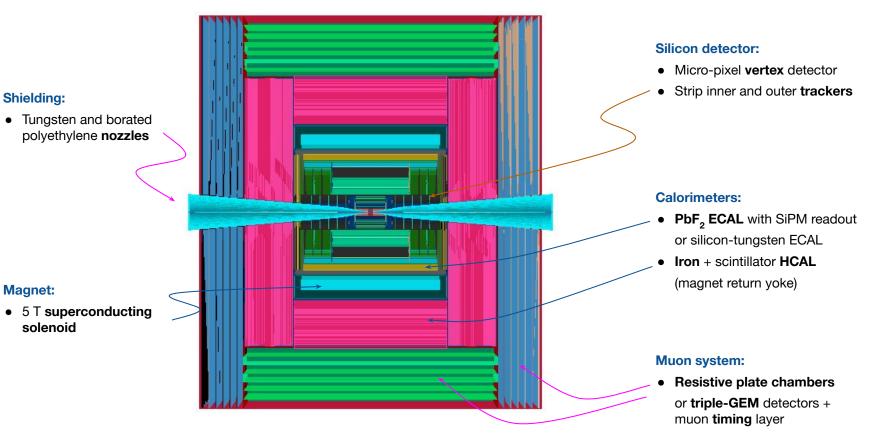

- For BIB rejection:
 - High-**granularity** to handle high occupancy
 - Excellent time resolution to reject asynchronous BIB component
 - Good energy resolution to reject soft BIB spectrum by thresholds

Two experimental designs

- Two interaction points allowed by the machine
- Generic detector design adapted from CLIC

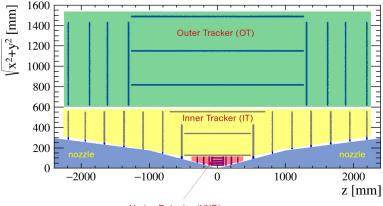
Several improvements moving to 10 TeV, also valid for 3 TeV design

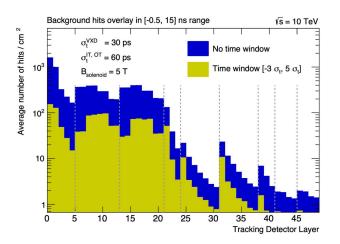
• Main change from 3 to 10 TeV design: moving solenoid inside calorimeters (higher B field)



Can be reached with technology available at HL-LHC

35th rencontres de Blois 2024


Detector design at 10 TeV



Tracker

Silicon detector layout

Vertex Detector (VXD)

Number of hits in the tracker (detector design 2)

BIB in tracker

• Up to 2000 hits/cm² per event

Detector requirements

- Doubled layers for stub reconstruction
- Time resolution < 100 ps to reject BIB

Detector technologies

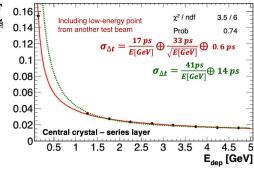
- Vertex detector: 25x25 μm² Si small-pixels (30 ps time resolution)
- Inner tracker: 50 μm x 1 mm Si macro-pixels (60 ps time resolution)
- Outer tracker: same as inner
 - Alternative layout: 50 µm x 10 mm Si macro-strips

Performance studies

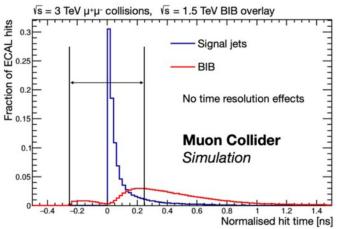
- Good tracking efficiency in the barrel (drop ~3.5% due to BIB)
 Ongoing studies in endcaps
- Vertex resolution ~3-5 μ m with BIB, stable as a function of p_{τ} and θ

35th rencontres de Blois 2024

Electromagnetic calorimeter


BIB in electromagnetic calorimeter

- Mostly photons (96%) and neutrons (4%)
- Occupancy: 300 hits / cm²
- Can be excluded by ~240 ps time cut


Detector requirements

- Longitudinal segmentation for BIB "fake shower" rejection
- Timing < 100 ps
- Original baseline design: silicon-tungsten

Muon Collider Simulation Photons [1-1000] Gev

Measured CRILIN time resolution

Arrival time distribution of ECAL hits for jets and BIB

Ongoing R&D: semi-homogeneous calorimeter made of PbF₂ crystals read out by SiPMs (CRILIN)

Baseline technology for design 1 at 10 TeV

- 5 layers with 45 mm length, 10×10 mm² cell area (21.5 X₀)
- Excellent prototype **time resolution** measured in test beams
- Ongoing R&D for precise measurement of crystal & SiPM radiation hardness

prospects

prospects

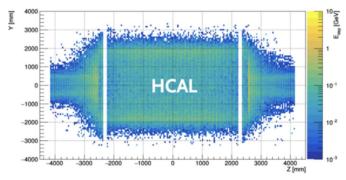
and detector

Muon collider physics

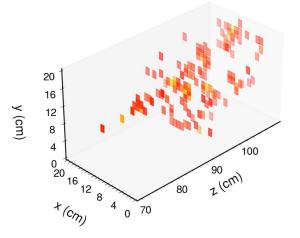
Hadronic calorimeter

Goal: 3-4 % jet energy resolution for hadronic Z decays $\rightarrow 60\%/\sqrt{E}$ resolution for HCAL

BIB in hadron calorimeter


- Mostly **photons** (96%) and **neutrons** (4%)
- Large asynchronous component
- Occupancy: 0.06 hits / cm²

Detector requirements

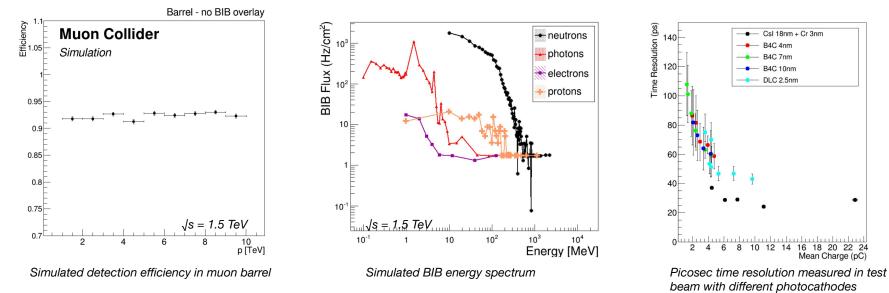

- Longitudinal **segmentation** for BIB rejection
- High granularity (< 3x3 cm²)
- Single layer timing of few ns

Baseline technology: iron absorber (also B field return yoke) + pad scintillators

Ongoing R&D: micro-pattern gaseous detectors (MPGDs) as active layer \rightarrow higher radiation resistance

Energy deposited by BIB in HCAL for a single bunch crossing

Pion shower in MPGD-HCAL prototype in test beam



No technological **choice yet**: low B-field and high momentum make p_{τ} measurement difficult

Possible candidates

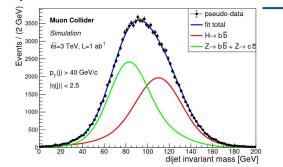
- 6-7 layers of resistive plate chambers (RPC)
- 6 layers of triple-GEMs + 1 timing layer made of Picosec-MicroMegas

Ongoing R&D to optimize detector gas mixtures, radiators and photocathodes for large scale

prospects

and detector

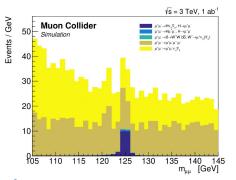
physics


Muon collider

Several cases of Higgs coupling studied in Muon collider full software simulations at 3 TeV

$H \rightarrow bb$

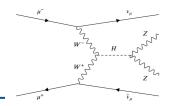
- Main background: $Z \rightarrow bb$ and $Z \rightarrow cc$
- Uncertainty on production cross-section 0.75% (dominated by signal yield uncertainty)



$H \rightarrow \mu^{+}\mu^{-}$

- Production from ZZ or WW fusion
- Two BDTs for background rejection •
- Statistical sensitivity 38%
- Sensitivity could be enhanced by tagging ZZ fusion

$H \rightarrow WW^*$

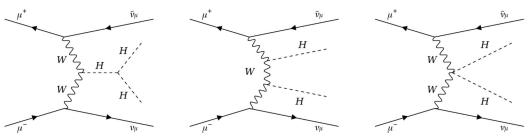

- Analyzed in semileptonic final state
- Kinematic requirements: central muon and jets .
- Two BDTs for background rejection
- Statistical sensitivity 2.9%

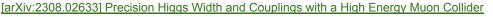
In all cases agreement within few % between full simulation and parametric (Delphes) simulations

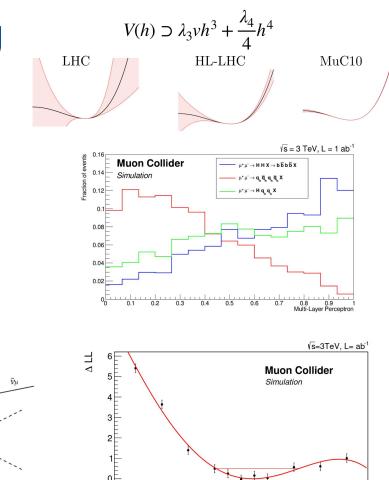
Higgs width measurement

- Can be measured from on-shell and off-shell $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$ processes
- **3.4%** precision from 10 TeV projections •
- Would be improved by muon forward tagging •

and detector prospects


Muon collider physics


Higgs trilinear coupling

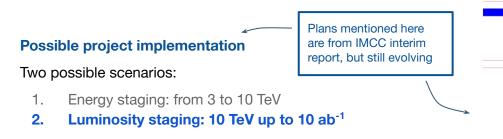

- $\textbf{HH} \rightarrow \textbf{bbbb:}$ a first step in the trilinear coupling measurement
 - Channel with highest statistics
 - Four jets in final states, paired to minimize $(m_{12}^2 m_H^2)^2 + (m_{34}^2 m_H^2)^2$
 - Multi-layer perceptron (MLP) to discriminate w/ and w/o Higgs backgrounds
 - Statistical uncertainty 33%

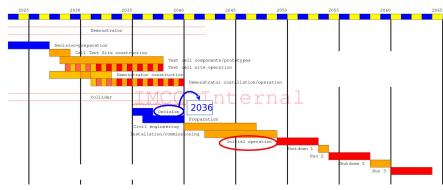
Precision trilinear coupling measurement

- One MLP to distinguish from non-Higgs background
- A second MLP to **discriminate off-shell production** (sensitive to trilinear coupling) from other HH production processes
- Expected 0.81 < κ_{λ3} < 1.44 at 68% CL, but optimizations ongoing

1.8

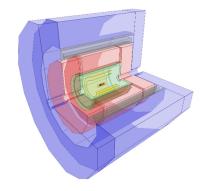
0.2 0.4 0.6


Outlook

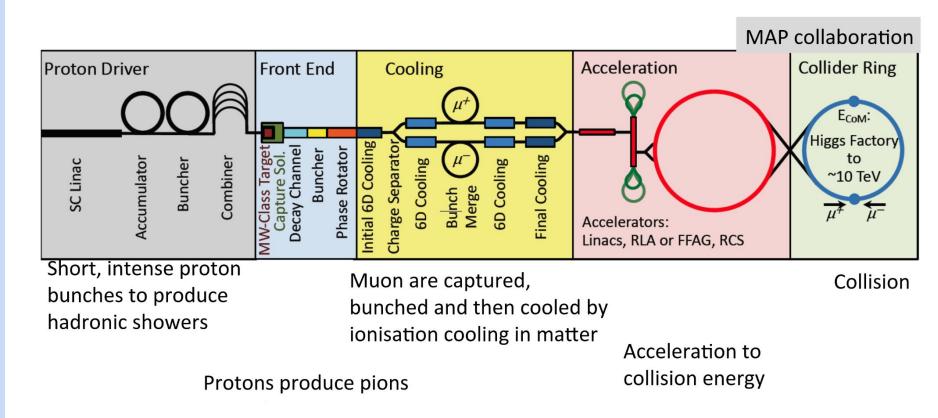

The Muon collider has a strong case for Higgs physics and BSM searches.

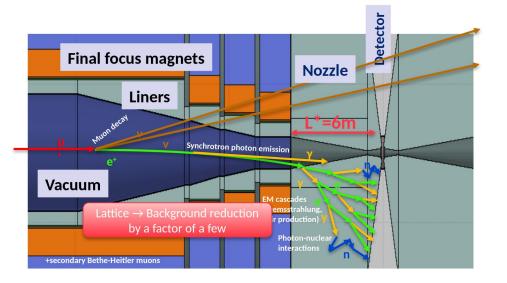
- Advantages: $m_{\mu} \gg m_{e} \rightarrow$ high-energy, entirely available in collisions
- Main challenges: $\tau_{\mu} = 2.2 \ \mu s \rightarrow fast acceleration, shielding, BIB rejection$

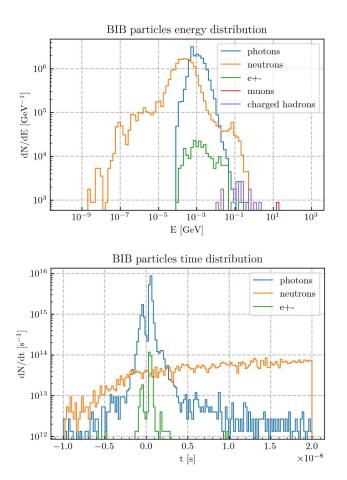
Detector and physics activities


- Physics studies completed in 3 TeV detector design
- Software implementation of 10 TeV design ongoing

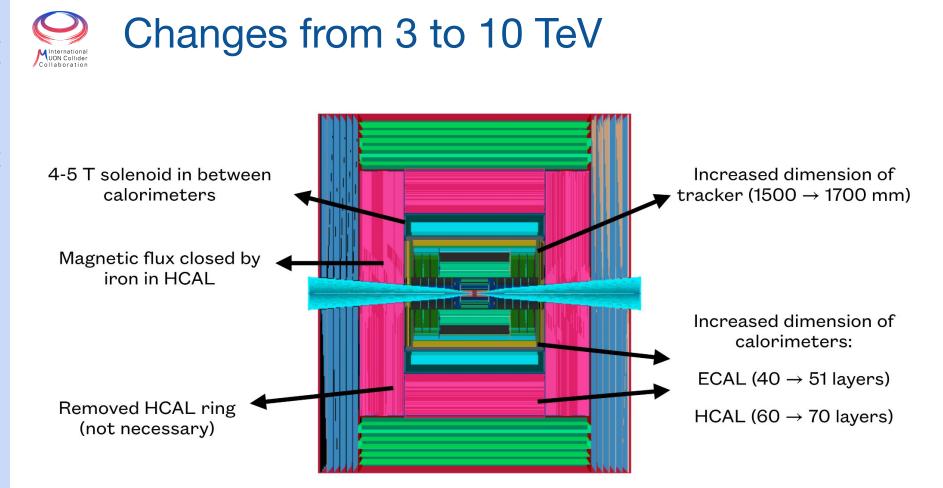
Muon Collider progress - ICHEP 2024






BIB composition

	Description	Relevance as background Dominating source		
Muon decay	Decay of stored muons around the collider ring			
Synchrotron radiation by stored muons	Synchrotron radiation emission by the beams in magnets near the IP (including IR quads \rightarrow large transverse beam tails)	Small		
Muon beam losses on the aperture	 Halo losses on the machine aperture, can have multiple sources, e.g.: Beam instabilities Machine imperfections (e.g. magnet misalignment) Elastic (Bhabha) μμ scattering Beam-gas scattering (Coulomb scattering or Bremsstrahlung emission) Beamstrahlung (deflection of muon in field of opposite bunch) 	Can be significant (although some of the listed source terms are expected to yield a small contribution like elastic μμ scattering, beam-gas, Beamstrahlung)		
Coherent e⁻e⁺ pair production	Pair creation by real* or virtual photons of the field of the counter-rotating bunch	Expected to be small (but should nevertheless be quantified)		
Incoherent e⁻e⁺ pair production	Pair creation through the collision of two real* or virtual photons emitted by muons of counter-rotating bunches	Significant		


Effect of nozzles on detector UON Collider

- Shielding of the background coming from the muon decay
- It reduces the background by several order of magnitude
- Design optimization ongoing

ternationa

Project staging

Parameter	Symbol	unit	Scenario 1		Scenario 2	
			Stage 1	Stage 2	Stage 1	Stage 2
Centre-of-mass energy	$E_{\rm cm}$	TeV	3	10	10	10
Target integrated luminosity	$\int \mathcal{L}_{ ext{target}}$	ab^{-1}	1	10	10	
Estimated luminosity	$\mathcal{L}_{ ext{estimated}}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	2.1	21	tbc	14
Collider circumference	C_{coll}	$\rm km$	4.5	10	15	15
Collider arc peak field	$B_{ m arc}$	Т	11	16	11	11
Luminosity lifetime	$N_{ m turn}$	turns	1039	1558	1040	1040
Muons/bunch	N	10^{12}	2.2	1.8	1.8	1.8
Repetition rate	$f_{ m r}$	$_{\rm Hz}$	5	5	5	5
Beam power	$P_{\rm coll}$	MW	5.3	14.4	14.4	14.4
RMS longitudinal emittance	ε_{\parallel}	eVs	0.025	0.025	0.025	0.025
Norm. RMS transverse emittance	$arepsilon_{\perp}$	μm	25	25	25	25
IP bunch length	σ_z	mm	5	1.5	tbc	1.5
IP betafunction	β	mm	5	1.5	tbc	1.5
IP beam size	σ	μm	3	0.9	tbc	0.9
Protons on target/bunch	$N_{\rm p}$	10^{14}	5	5	5	5
Protons energy on target	E_{p}	${ m GeV}$	5	5	5	5
BS photons	$N_{\mathrm{BS},0}$	per muon	0.075	0.2	tbc	0.2
BS photon energy	$E_{\mathrm{BS},0}$	MeV	0.016	1.6	tbc	1.6
BS loss/lifetime (2 IP)	$E_{\rm BS,tot}$	GeV	0.002	1.0	tbc	0.67

Muon collider physics and detector prospects