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Hadronic objects in ATLAS

» Jets in ATLAS are made out of topological clusters (calorimeter) and charged particle tracks (inner
detector)

» Clusters and tracks are combined to form higher level objects (with 4-vectors) as input to
jet-clustering

Particle Flow Objects (PFO) for small and large AR jets (see sketch)

Eur.Phys.J.C77(2017)466

Tracks

Clusters
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Clusters

' Unmatched
Clusters

Flow chart particle flow algorithm

Track-CaloClusters (TCC) for large AR jets (splitting the cluster energy to all matching tracks
with track’s p, -fraction in matched tracks as weight, arL-pHys-pPuB-2017-015)

Unified Flow Objects (UFO) for large AR jets combine PFO and TCC depending on
environment to make best of both eur.phys.J.c81(2020)334)

» Jet clustering is performed with FastJet — anti-k with AR = 0.4 (small) or AR = 1.0 (large)

» Jets are then calibrated in several steps for energy (p, ), momentum direction and mass (for large
AR)

S. Menke, MPP Minchen New techniques for reconstructing, calibrating and identifying hadronic objects with ATLAS Blois2024, 24 Oct 2024, Blois 2


https://link.springer.com/article/10.1140/epjc/s10052-017-5031-2
https://cds.cern.ch/record/2275636
https://doi.org/10.1140/epjc/s10052-021-09054-3
https://www.mpp.mpg.de/~menke

EXPERIMENT

Run: 427394
Event: 3038977
2022-07-05 17:02:31 CEST

. /
y 2022
S. Menke, MPP Miinchen <« New techniques for reconstructing, calibrating and identifying hadronic objects with ATLAS » Blois2024, 24 Oct 2024, Blois K}



https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions#13_6_TeV_collisions_2022
https://www.mpp.mpg.de/~menke

Pile-Up impact on calorimeter signals in ATLAS

twiki.cern.ch/twiki/bin/view/AtlasPublic/
LuminosityPublicResultsRun3

ATLAS Online
/s =13.6 TeV, 82 fb!

2022: [UCE= 42.5
Bl 2023 [0=50.9
2024: (UC= 53.6
Total: UO= 47.7

» Pile-Up characteristics

e 1. Average number of interactions per crossing ~ 50 in Run-3
e At: Bunch distance 24.95 ns
e Signal integration time for the LAr-calorimeters ~ 500 ns
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26.7 km = 3564 bunch places each At = 24.95 ns

» Typical LHC bunch structure in 2022-2024
e 2340 CoIIiding bunch pairs (2835 is Interactions per crossing 2022-2024
theoretical max) twiki.cern.ch/twiki/bin/view/AtlasPublic/

e 23 trains ~ 800 ns apart (LHC injection) LArCaloPublicResults2015

2-3 sub-trains with gaps of 200 ns (SPS
Injection)
e 36 filled bunches per sub-train

Pile-Up impact depends on bunch crossing Number
(BCID)

Up to 20 colliding bunch pairs contribute to signal

» See arXiv:2407.10819, Where ATLAS turns noise s fom begi s o1 i toGID]
into data: Using pileup for physics

ATLAS Preliminary 2017 data

. —e— Data before correction
48 bunches subtrain

—e— Prediction

—e— Data after correction

E; / (An.A@p) [MeV]

LAr baseline shift
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Topological clustering

» Jet constituents, 7+, e* and ~ are made out of topological cell clusters (TopoClusters)
Eur.Phys.J.C77(2017)490

¢ 3d energy bIObS Of nelghbourlng ATLAS S|mulat|on 2010 ATLAS S|mulat|on 2010 ATLAS S|mulat|on 2010
calorimeter cells around seeds s g L E [MeV] 6425 T E [MeV] PSPl
with |E| > 40 | | |

e Direct seed neighbours with
|E| > 20 become seeds too
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twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResulis2015
Eurbhys.).C8412024)455  p. Cglorimeters have excellent time resolution!

leE”foﬂjE;oo e Intrinsic time resolution in LAr samplings is ~ 60 ps at high energies
f\E'L?ﬂi,E;fo e Time has always been reconstructed alongside energy since the
beginning of data taking
e Added recently to the topological clustering algorithm as additional
discriminator (cut at |f| < 12.5 ns) for any cell that has |E| > 40
e But restrict the time cut to those cells with E < 200
To keep significant, positive energy deposits that are out-of-time

(searches for exotic, long-lived particles)

ATLAS Preliminary Z- eedata
EMEC Slot 11
0.45 IL =33 \5=13 Tev 15<<2.0

p Fit Results:
cr(t)=E°EIp1 High p: 2.182
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Time as a nhew discriminant

twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015
ATLAS Preliminary LAr Endcap C ATLAS Preliminary LAr Endcap C ATLAS Preliminary LAr Endcap C
Run 325713 Event 426221175 Run 325713 Event 426221175 Run 325713 Event 426221175
All Cells Cells in Clusters Cells in Clusters with Timing
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Eur.Phys.J.C84(2024)455
LAr cell energy sums above 100 MeV Inside default clusters Inside clusters with time discrimination

o ATLAS Simulation
» New time discriminant further reduces residual out-of-time (OOT) Pile-Up that [[EEH sy umy
was not suppressed by default topological clustering g SO MAOOTIL e
Entire clusters are removed (reduces background) ) 2223 (I;L:(tt. cut
And cells inside clusters are removed (improves signal, see plots above) / + . 2223 Eﬁ 23::338
» removes OOT Pile-Up jets (see plot to the right) ST etmon

e By ~ 50% at p, ~20GeV; by ~80% at p, > 50 GeV
e Number of in-time jets remains unchanged
e Resolution improves by ~ 5%

» Removes fakes for 7=, et / ~
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OOT Pile-Up jets vs. p |
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Calibration methods

» | ocal Hadronic Calibration (a.k.a. Local Cell Weighting, LCW, Eur.phys.s.c77(2017)490)

e 4 step procedure to bring the energy scale of clusters from the raw "EM”-scale to the particle-level
"LC”-scale

e Classification: Compute EM-probability p= form shapes
e Cell-weighting: Apply hadronic (HAD) and electromagnetic (EM) weights:
Weell = (1 - P™YWiiap + P wem

e For 3 different corrections:
Corrections for hadronic non-compensation

Corrections for out-of-cluster deposits
Corrections for out-of-calorimeter (dead-material) deposits

> Jets (EurPhys.).C81(2021)689)

e Can use either EM- or LC-scale objects (clusters or flow objects)
e Are corrected for Pile-Up (jet-area correction and residual Pile-Up correction)
e Get their energy corrected by MC-derived Jet-Energy-Scale correction

e Flavour dependency and resolution gets improved by Global-Calibration (MC-derived, keeping average
energy scale constant)

o Data is corrected in-situ from measured p, balance of jets in multi-jet and Z° / v + jet events to match MC
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Cluster calibration with neural networks ATL-PHYS-PUB-2023-019

» Idea: Apply machine learning to Local Hadronic Calibration

e To explore the applicability of neural networks to calorimetric calibration

e So far done with the first of the three correction steps (non-compensation) and implicit classification
Biggest difference to legacy LCW: Pile-Up is included

e Qut-of-cluster and dead-material corrections still to come
» Input quantities for the NNs:

o Kinematics: (E5Y, y5M) e Significance: (Ecius / ocius) ® Time: (s, Varaus(ten)) © Cluster moments: (depth,
centroid, EM-fraction, energy density, lateral and longitudinal dispersion, compactness) e Environment:
(isolation, Npy, u)

» Trained NNs:
ATLAS Simulation Preliminary

(s = 13 TeV Anti-k, R = 0.4 EMTopo jets =~ BNN training (] Deep Neural Net (DNN) with Ieaky Gaussian kernel

+— DNN training

Pra” 20 COV.LSI <2 B 2S00V Ly o e Bayesian Neural Net (BNN) with regularised negative
—— LCW hadronic scale |Og'|ike|ih00d
» Linearity (left) and resolution (right) of NNs
compared to EM- and LC-scale on simulated
clusters from di-jets with Pile-Up

e NNs outperform legacy LCW (removal of Pile-Up)
but Pile-Up removal is not part of LCW ...

dep e DNN slightly better than BNN

e Encouraging result to implement the other steps

ATLAS Simulation Preliminary =
Vs = 13 TeV Antik, R = 0.4 EMTopo jets
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New techniques for jet calibration - Global calibration Eur.Phys.J.C83(2023)761

ATLAS Simulation _
(s = 13 TeV, Pythia 8 dijet g/d o
Anti-k, R=0.4 jets (PFlow) urd Jets
0.2<|n_|<0.7

jets

» Global-Calibration is applied to jets after setting the jet energy
scale (MCJES) (based on MC simulations and energy E and
pseudo-rapidity n of the jet)

» Global Sequential Calibration (GSC) (used for Run-2)

e Uses many kinematic observables in addition to p, : e Charged
p. fraction fharged ® Energy fractions in first Tile & third EM layer

frieo ® fiarz @ Number of tracks N..cc ® p1-weighted average track | s
distance wi...« ® Number of associated muon segments Necgments 10° 2x10
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e Since JES is kept unchanged, the six corrections can be applied p | response after MCJES
and checked independently of each other » Requires uncorrelated observables

» Global Neural Network Calibration (GNNC) (new, will be used for Run-3)

e Alternative to GSC

e Trains a DNN with jet observables for a simultaneous correction to p, and leaky Gaussian kernel
loss-function
Allows the use of correlated variables; is allowed to change JES

e In addition to the GSC observables it uses: e 12 more (i.e. all 14) layer energy fractions
fLAr0-3 Tile0-2 HECO-3.Fcalo-2 ® Number of clusters with 90% energy Nogo, © 1 @ Pile-Up variables 1, Npy
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New techniques for jet calibration - Global calibration Eur.Phys.J.C83(2023)761

» Closure and resolution in p;, compared after MCJES, MCJES+GSC and MCJES+GNNC (here for
0.2 < |n| < 0.7, similar results in all other n-regions)

» Small non-closure for GSC at low p, stems from MCJES (GSC keeps JES unchanged)
» GNNC does change JES and hence improves the MCJES closure at low p |
» Resolution improves by 15 - 25% for GNNC compared to GSC

ATLAS Simulation

s = 13 TeV, Pythia 8 dijet — MCJES
Anti-k; R = 0.4 jets (PFlow)

0.2 <| r]det| <0.7
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ATLAS Simulation _
(s = 13 TeV, Pythia 8 dijet
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New techniques for jet calibration  Jet Energy Scale uncertainty Eur.Phys.J.C83(2023)761

ATLAS — Muon resolution
Vs =13 TeV, 140 fb™ — Muon scale

Z (- Yd)+jet VT

Antik, R = 0.4 (PFlow+JES)
7 <0.8

» 7Y+ jet and v + jet data are compared in-situ to simulations to
bring the final JES in data to simulation level (after MCJES+GNNGC
and /n-situ n-intercalibration with multi-jet events)

» Missing-E£, Projection Fraction (MPF) is used to calculate

p . -balance between Z° / ~ and the full hadronic recoil
best for Pile-Up and lower p

> O(1%) precision is achieved over a large p, -range TR
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% ATLAS . — Photon resolution g ATLAS o — Eﬂﬁiﬁﬁ ;izcl)(leution

R I E | e > Direct Balance (DB) is used in 7 + jet
: : events to measure the balance of ~
e against one (possibly b-tagged) jet

" " Good at p, > 100 GeV and for single

b-jets
» Up to O(1%) precision on-top of
general JES uncertainty

Py [GeV]

JES uncertainty vs. p | : DB method ~ + jet b-jet JES uncertainty vs. p | : DB method ~ + b-jet
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Calibration of E and m of large A R-jets

> Large AR jets: good for boosted topologies of heavy
resonances

e The asymmetric response in energy and mass requires
dedicated calibration for both

e Both remain highly correlated though and a combined
calibration approach is hence desirable

» Complex DNN with » annotation (adding 11 Gaussian
n-dependent weights to input)

e Inputs: Jet kinematics E, m, n, 8 jet substructure variables,
/ detector-level energy or p, fractions, Pile-Up
environment Npy, 1

e |Initial training for both E and m

e Loss function is sum of negative log-likelihood predicting 1
and o of Gaussian distributions in E and m

e Then fork and optimise separately for E and m (can freeze
the other)

e Residual connection for m improves the focus on most
important inputs for m

» Trained on 270 M jets from fully simulated di-jet events (based
on Pythia8 and Geant4; other generators, physics for
cross-checks)

S. Menke, MPP Minchen New techniques for reconstructing, calibrating and identifying hadronic objects with ATLAS

n-annotation functions
Blois2024, 24 Oct 2024, Blois
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Calibration of E and m of large A R-jets arXiv:2311.08885

ATLAS Simulation

Vs = 13 TeV, Pythia 8 [ Uncalibrated
W — Wz, m, =2TeV - Standard calibration

» Comparison of the DNN calibration (red) with standard calibration
(green) and no calibration (blue)

e DNN outperforms standard calibration in energy- and mass-scale
closure and resolution for both £ and m

e Typical resolution improvement of > 30% for p; > 500 GeV

e Robust against Pile-Up |

e Performs also better on topologies not used in the training (boosted ot e
heavy bosons)

Jet Mass Response
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Identification methods

>

Distinguishing jets initiated by different particles (light quark, gluon, heavy boson, top-quark) is
extremely important to identify the final states

We use machine learning (with different network architectures) for jet tagging on simulated
samples

e Trained either on high-level jet-based quantities
Restricted to infrared/collinear safe observables for some

e Or with additional information from the jet constituents (flow objects)

Performance is evaluated by comparing background rejection rate for a given signal efficiency for
different taggers

Model dependence is probed by applying the standard-sample trained tagger on different
simulated samples with alternative showering and hadronization modelling
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Identification methods  Quark/gluon tagger ATL-PHYS-PUB-2023-032

DeParT
ParT
P.Net

» Standard training is done on fully simulated di-jet MC with FC red.
Pythia8
e 10M R = 0.4 anti-k; PFO jets

Networks with 10 (5) high-level jet quantities FCN (FC reduced)

Particle Flow (PFN) and IRC-safe Energy Flow (EFN) Networks
with constituent information: 8 for PFN (including mass), 4
linear ones for EFN

» Particle Net (P.Net), a graph NN with each constituent (and its
/ features) forming a node, connected via edges to kK = 16
nearest neighbours

vy

elvs.p | for eq = 0.8

ATLAS Simulation Preliminary DeParT
13 TeV, Pythia8, 80% WP ParT
anti-kt, R = 0.4 PFlow jets P Net

FC red.
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» Particle Transformer (ParT) and Dynamically Enhanced Particle
Transformer (DeParT) with constituent features (like P.Net) and
Interaction variables on pairs of constituents

©
o~
[1]

0.3

-1 -1
maXx | 1- Eg, model / Eg, Pythia |

o
N

» PartT,DePartT and P.Net best in gluon rejection, but largest in
model dependence; least model dependence in IRC-safe EFN

o
=

=
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Identification methods  W-boson tagger ATL-PHYS-PUB-2023-020

» PFN, EFN, P.Net and ParT are trained on Pythia8 generated large R = 1.0 anti-k; UFO jets from
W’ — WZ events and Pythia8 generated multi-jet background

» ParT with highest bkgd rejection (and largest model dependence), EFN smallest in both

)
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- Vs=13 TeV,W' -WZ, Pythia8 -.+. ParticleNet
[ antik, R=1.0 UFO Soft-Drop CS+SK jets PFEN

- &£ =80%
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-~ ATLAS Simulation Preliminary
Vs =13 TeV, W jet tagging
- anti-k, R=1.0 UFO Soft-Drop CS+SK jets
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Identification methods " Top-quark tagger JINST19(2024)P08018

» Baseline hIDNN (high-level-jet info) compared to constituent based DNN, PFN, EFN,
P.Net and ResNet50 are trained on Pythia8 generated large R = 1.0 anti-k; UFO jets
from Z' — tt events and Pythia8 generated multi-jet background

» ResNet50 is an image classification CNN
Turn every jet into a 2D image of energies of 64 x 64 rotated An x A¢ pixels

ATLAS Simulation
-2 Vs =13 TeV, Pythia8
anti-k;, R=1.0 UFO CSSK jets
1.0 eD multijet

Normalized pr
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» "Bottom-up” experimental uncertainites evaluated in addition to model-dependence

» P.Net with highest bkgd rejection (and largest model dependence), EFN smallest
uncertainty; ResNet50 worst rejection, 2nd largest uncertainty

ATLAS Simulation
2 Vs =13 TeV, Pythia8
anti-k;, R=1.0 UFO CSSK jets
1.0 7 S

Pre-processed ¢
Normalized pr

ATLAS Simulation

Vs =13 TeV, Pythia8
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Esig = 0.5

ATLAS Simulation ParticleNet
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Missing transverse momentum arXiv:2402.05858

ATLAS 140 fo™' {s=13 TeV
Z — ppu, jet inclusive selection
T|ght WP, PFlow p

Events / GeV

Data
[ Z—pp (Sherpa)
o tt+Wit

» 2D missing transverse momentum vector p7T*° is derived from =
pObJ

(p2™,pS™) from all "hard” objects (obj) and a remaining "soft” term from | e
"unused” tracks plrack:

' hard soft . hard obj soft track
pT = -p - pP, with > pP and pTt = > p7

Ob_j e,7Y, T, _jet unused tracks 0 100 200 300 400 500 600 700 800 900 1000

p [GeV]
» Scalar transverse momentum sum to evaluate the scale: :

E Pl = E pObJ E ptraCk ® ATLAS 140" (513 Tev

Z — pp, jet inclusive selection

. Tight WP, PFIowp
obj=e,v,7,u,jet  unused tracks .

» Run-2 performance updated with full Run-2 dataset for use of PFlow objects . -Qﬂiwsmma)

o tt+Wit

. . 1 Diboson
for jets .

» Evaluation in Z° — uu and Z° — ee events (no real pT'*® expected) i

o Dominant systematic in p*" from JES (bump at ~ 100 GeV)
o Small excess in p°" tail in data from fake electrons

Data/MC

_80 100 120
p"" Soft Term [GeV]

soft :
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» Event-based significance

_ miss /H : .
Sy = PL e/t L1 basedon Missing transverse momentum :
Hy = Z,DJ , Which is significance evaluated on S= |pmss’ Z vooi | pmiss
: . .y 1 1
jet object-based uncertainties V: \ o5

approximate only (assumes
calorimeter-like resolution)
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Conclusions

» Reconstruction and calibration of hadronic objects in ATLAS is a very active field

e Pile-Up remains the biggest challenge
e Time as a new discriminant in calorimetry helps reducing it
e New ML-based techniques start to replace legacy calibration methods for energy and mass

» Run-2 performance results:

» Jet calibration

e O(1%) precision reached for jet energy scale, O(15 - 30%) improvements in resolution for energy and
mass

e Additional b-jet energy scale uncertainty measured to O(1%)
» Jet tagging

e g/g, heavy-boson and t-quark taggers based on ML with constituent information outperform
taggers with high-level jet info

e But model dependence is larger for constituent based taggers

» Missing transverse momentum

e Benefits from reconstruction and calibration advancements — especially from jets
e Object-based significance sharpens the MET discrimination power

» Run-3 analyses benefit from these improvements

S. Menke, MPP Minchen New techniques for reconstructing, calibrating and identifying hadronic objects with ATLAS Blois2024, 24 Oct 2024, Blois 20


https://www.mpp.mpg.de/~menke

	New techniques for reconstructing, calibrating and identifying hadronic objects with ATLAS
	Hadronic objects in ATLAS
	Di-jet event in Run-3
	Pile-Up impact on calorimeter signals in ATLAS
	Topological clustering

	Time as a new discriminant
	Calibration methods
	Cluster calibration with neural networks
	New techniques for jet calibration
	Global calibration

	Calibration of energy and mass of large Delta R-jets

	Identification methods
	Quark/gluon tagger
	W-boson tagger
	Top-quark tagger

	Missing transverse momentum
	Conclusions

