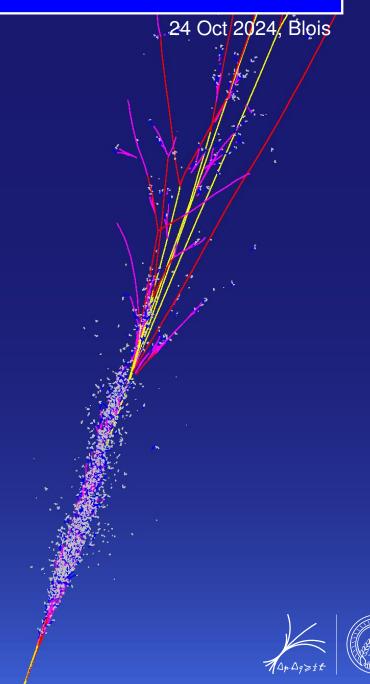
New techniques for reconstructing, calibrating and identifying hadronic objects with ATLAS

Blois2024

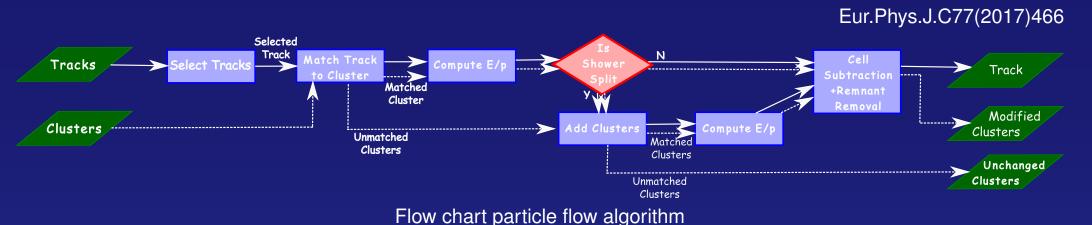
Sven Menke, MPP München

- Hadronic objects in ATLAS
 - Importance of Pile-Up
 - Topological clustering
- Time as a new discriminant
- Calibration methods
 - ML for cluster calibration
 - ML for jet energy calibration
 - ML for energy and mass for large $\triangle R$ -jets
- Identification methods
 - Quark/gluon tagger
 - W-boson tagger
 - Top-quark tagger
- Performance of missing transverse momentum
- Conclusions

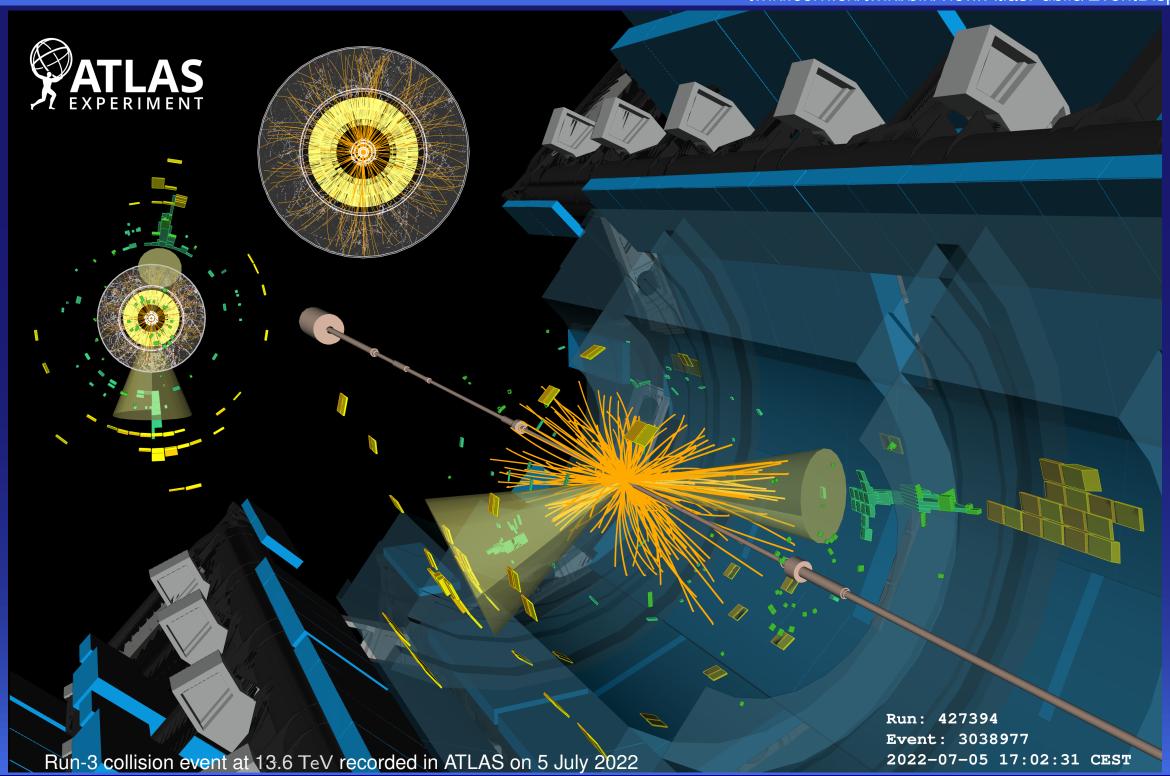


Hadronic objects in ATLAS

- Jets in ATLAS are made out of topological clusters (calorimeter) and charged particle tracks (inner detector)
- Clusters and tracks are combined to form higher level objects (with 4-vectors) as input to jet-clustering
 - ▶ Particle Flow Objects (PFO) for small and large ΔR jets (see sketch)



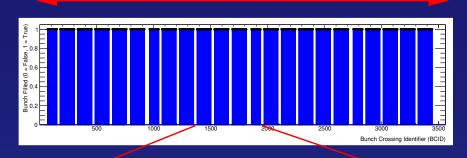
- ► Track-CaloClusters (TCC) for large ΔR jets (splitting the cluster energy to all matching tracks with track's p_{\perp} -fraction in matched tracks as weight, ATL-PHYS-PUB-2017-015)
- ▶ Unified Flow Objects (UFO) for large ΔR jets combine PFO and TCC depending on environment to make best of both Eur.Phys.J.C81(2020)334)
- ▶ Jet clustering is performed with FastJet anti- k_t with $\Delta R = 0.4$ (small) or $\Delta R = 1.0$ (large)
- Jets are then calibrated in several steps for energy (p_{\perp}) , momentum direction and mass (for large ΔR)

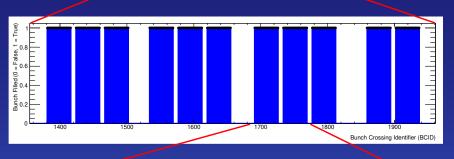


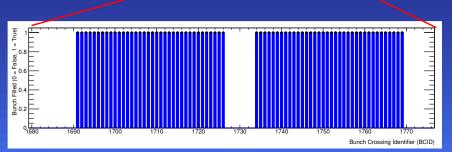
Pile-Up impact on calorimeter signals in ATLAS

- Pile-Up characteristics
 - μ : Average number of interactions per crossing \sim 50 in Run-3
 - Δt : Bunch distance 24.95 ns
 - ullet Signal integration time for the LAr-calorimeters \sim 500 ns

26.7 km \equiv 3564 bunch places each Δt = 24.95 ns

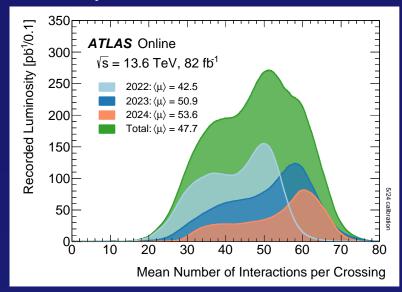






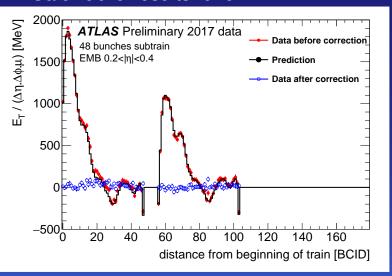
- Typical LHC bunch structure in 2022-2024
 - 2340 colliding bunch pairs (2835 is theoretical max)
 - 23 trains \sim 800 ns apart (LHC injection)
 - 2-3 sub-trains with gaps of 200 ns (SPS injection)
 - 36 filled bunches per sub-train
 - ► Pile-Up impact depends on bunch crossing Number (BCID)
 - ► Up to 20 colliding bunch pairs contribute to signal
- See arxiv:2407.10819, where ATLAS turns noise into data: Using pileup for physics

twiki.cern.ch/twiki/bin/view/AtlasPublic/ LuminosityPublicResultsRun3



Interactions per crossing 2022-2024

twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015



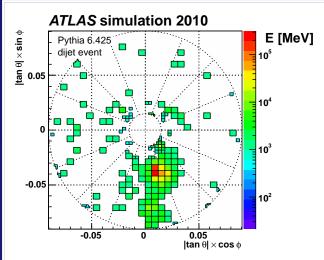
LAr baseline shift

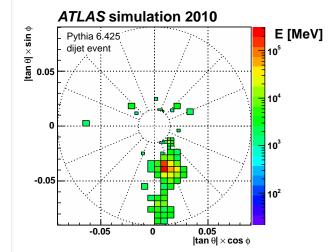
Topological clustering

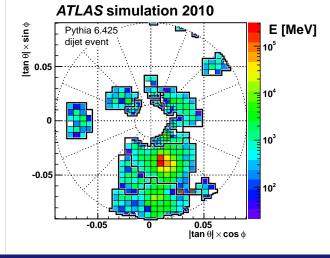
- ightharpoonup Jet constituents, au^{\pm} , e^{\pm} and γ are made out of topological cell clusters (TopoClusters)
 - Eur.Phys.J.C77(2017)490

- 3d energy blobs of neighbouring calorimeter cells around seeds with $|E| > 4\sigma$
- Direct seed neighbours with $|E| > 2\sigma$ become seeds too
- Proto-clusters are re-clustered around local energy maxima
- σ is the expected noise

 $\equiv \sigma_{\mathsf{elec}} \oplus \sigma_{\mathsf{pile-up}}$





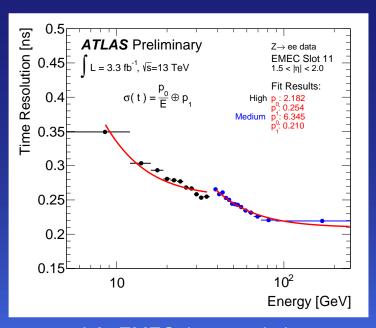


 $|E| > 2 \sigma_{\text{noise}}$

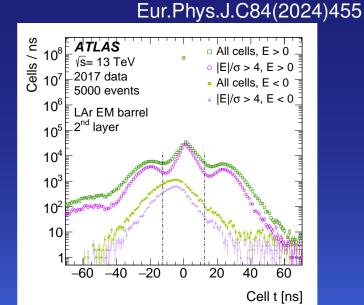
 $|E| > 4 \sigma_{\text{noise}}$

4 / 2 / 0 TopoClusters

twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015



LAr EMEC time resolution

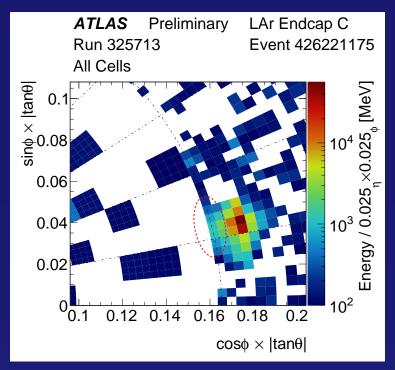


Cell time in LAr EMB

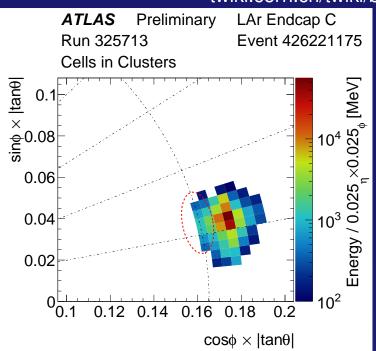
Calorimeters have excellent time resolution!

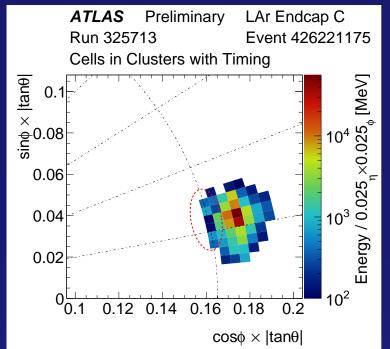
- Intrinsic time resolution in LAr samplings is \sim 60 ps at high energies
- Time has always been reconstructed alongside energy since the beginning of data taking
- Added recently to the topological clustering algorithm as additional discriminator (cut at |t| < 12.5 ns) for any cell that has $|E| > 4\sigma$
- But restrict the time cut to those cells with $E < 20\sigma$
 - ► To keep significant, positive energy deposits that are out-of-time (searches for exotic, long-lived particles)

Time as a new discriminant



twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015





New default in Run-3

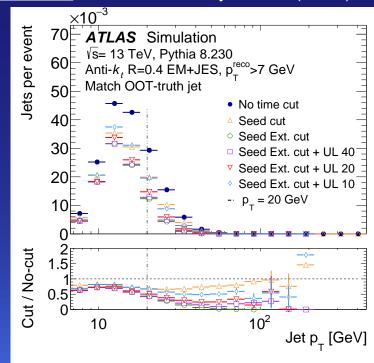
Eur.Phys.J.C84(2024)455

LAr cell energy sums above 100 MeV

Inside default clusters

Inside clusters with time discrimination

- New time discriminant further reduces residual out-of-time (OOT) Pile-Up that was not suppressed by default topological clustering
 - ► Entire clusters are removed (reduces background)
 - ► And cells inside clusters are removed (improves signal, see plots above)
- removes OOT Pile-Up jets (see plot to the right)
 - By $\sim 50\%$ at $p_{\perp} \simeq 20$ GeV; by $\sim 80\%$ at $p_{\perp} \geq 50$ GeV
 - Number of in-time jets remains unchanged
 - Resolution improves by $\sim 5\%$
- ightharpoonup Removes fakes for τ^{\pm} , e^{\pm} / γ

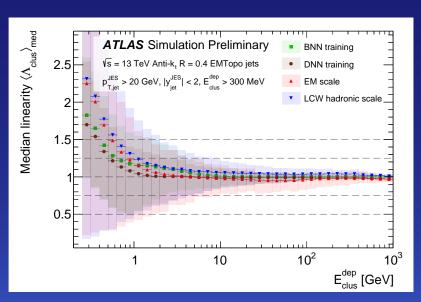


OOT Pile-Up jets vs. p

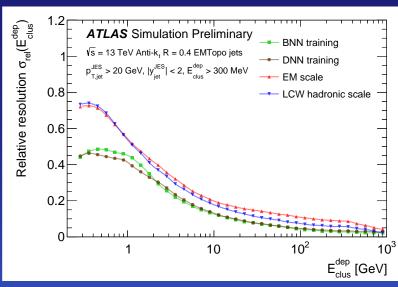
Calibration methods

- Local Hadronic Calibration (a.k.a. Local Cell Weighting, LCW, Eur.Phys.J.C77(2017)490)
 - 4 step procedure to bring the energy scale of clusters from the raw "EM"-scale to the particle-level "LC"-scale
 - Classification: Compute EM-probability p^{EM} form shapes
 - Cell-weighting: Apply hadronic (HAD) and electromagnetic (EM) weights:
 - $ightharpoonup W_{cell} = (1 p^{EM})W_{HAD} + p^{EM}W_{EM}$
 - For 3 different corrections:
 - Corrections for hadronic non-compensation
 - ► Corrections for out-of-cluster deposits
 - Corrections for out-of-calorimeter (dead-material) deposits
- Jets (Eur.Phys.J.C81(2021)689)
 - Can use either EM- or LC-scale objects (clusters or flow objects)
 - Are corrected for Pile-Up (jet-area correction and residual Pile-Up correction)
 - Get their energy corrected by MC-derived Jet-Energy-Scale correction
 - Flavour dependency and resolution gets improved by Global-Calibration (MC-derived, keeping average energy scale constant)
 - Data is corrected in-situ from measured p_{\perp} balance of jets in multi-jet and Z⁰ / γ + jet events to match MC

- Idea: Apply machine learning to Local Hadronic Calibration
 - To explore the applicability of neural networks to calorimetric calibration
 - So far done with the first of the three correction steps (non-compensation) and implicit classification
 - ▶ Biggest difference to legacy LCW: Pile-Up is included
 - Out-of-cluster and dead-material corrections still to come
- Input quantities for the NNs:
 - Kinematics: $(E_{\text{clus}}^{\text{EM}}, y_{\text{clus}}^{\text{EM}})$ Significance: $(E_{\text{clus}} / \sigma_{\text{clus}})$ Time: $(t_{\text{clus}}, \text{Var}_{\text{clus}}(t_{\text{cell}}))$ Cluster moments: (depth, centroid, EM-fraction, energy density, lateral and longitudinal dispersion, compactness) Environment: (isolation, N_{PV} , μ)



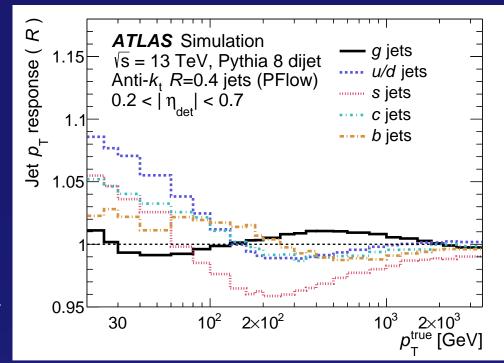
Median linearity of reconstructed $E_{\rm clus}^{\rm dep}$



Relative resolution of reconstructed E_{clus}^{dep}

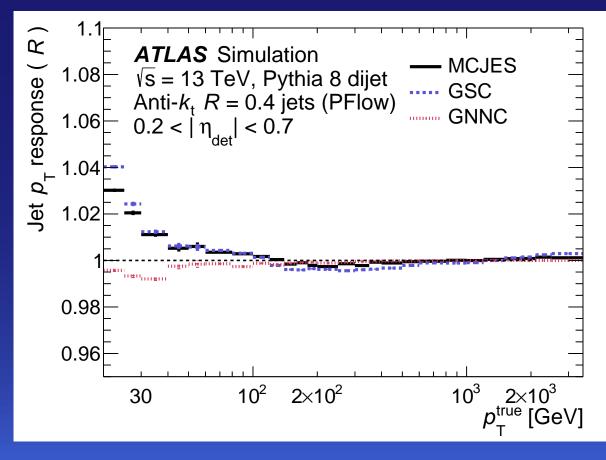
- Trained NNs:
 - Deep Neural Net (DNN) with leaky Gaussian kernel
 - Bayesian Neural Net (BNN) with regularised negative log-likelihood
- Linearity (left) and resolution (right) of NNs compared to EM- and LC-scale on simulated clusters from di-jets with Pile-Up
 - NNs outperform legacy LCW (removal of Pile-Up)
 - but Pile-Up removal is not part of LCW ...
 - DNN slightly better than BNN
 - Encouraging result to implement the other steps

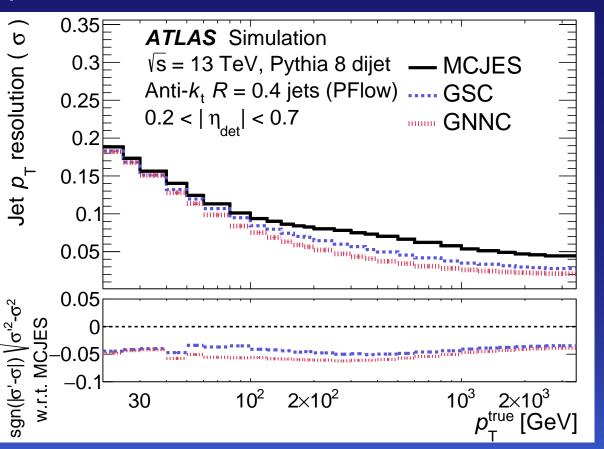
- Global-Calibration is applied to jets after setting the jet energy scale (MCJES) (based on MC simulations and energy E and pseudo-rapidity η of the jet)
- Global Sequential Calibration (GSC) (used for Run-2)
 - Uses many kinematic observables in addition to p_{\perp} : Charged p_{\perp} fraction $f_{\rm charged}$ Energy fractions in first Tile & third EM layer $f_{\rm Tile0}$ $f_{\rm LAr3}$ Number of tracks $N_{\rm track}$ p_{\perp} -weighted average track distance $w_{\rm track}$ Number of associated muon segments $N_{\rm segments}$



- Since JES is kept unchanged, the six corrections can be applied p_{\perp} response after MCJES and checked independently of each other \blacktriangleright Requires uncorrelated observables
- Global Neural Network Calibration (GNNC) (new, will be used for Run-3)
 - Alternative to GSC
 - Trains a DNN with jet observables for a simultaneous correction to p_{\perp} and leaky Gaussian kernel loss-function
 - Allows the use of correlated variables; is allowed to change JES
 - In addition to the GSC observables it uses: 12 more (i.e. all 14) layer energy fractions $f_{\text{LAr0-3,Tile0-2,HEC0-3,FCal0-2}}$ Number of clusters with 90% energy $N_{90\%}$ η Pile-Up variables μ , N_{PV}

- Closure and resolution in p_{\perp} compared after MCJES, MCJES+GSC and MCJES+GNNC (here for $0.2 < |\eta| < 0.7$, similar results in all other η -regions)
- Small non-closure for GSC at low p_{\perp} stems from MCJES (GSC keeps JES unchanged)
- ightharpoonup GNNC does change JES and hence improves the MCJES closure at low p_{\perp}
- Resolution improves by 15 25% for GNNC compared to GSC

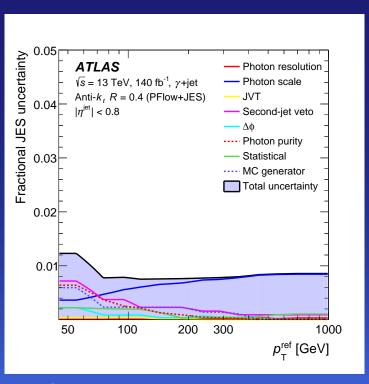


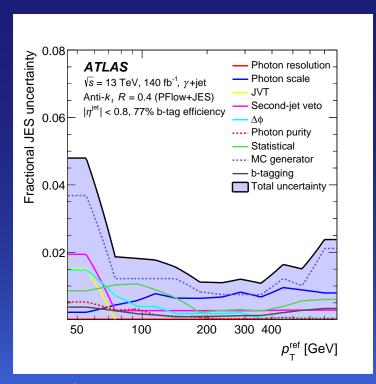


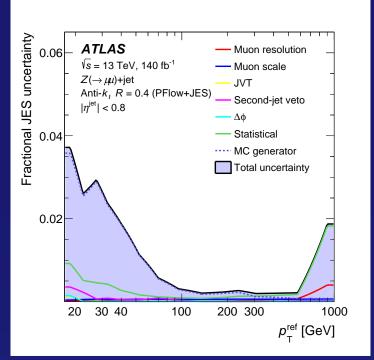
Jet p_{\perp} response closure

Jet *p* ₁ resolution

- $ightharpoonup Z^0$ + jet and γ + jet data are compared *in-situ* to simulations to bring the final JES in data to simulation level (after MCJES+GNNC and *in-situ* η -intercalibration with multi-jet events)
- ► Missing- E_{\perp} Projection Fraction (MPF) is used to calculate p_{\perp} -balance between \mathbb{Z}^0 / γ and the full hadronic recoil best for Pile-Up and lower p_{\perp}
- ightharpoonup O(1%) precision is achieved over a large p_{\perp} -range





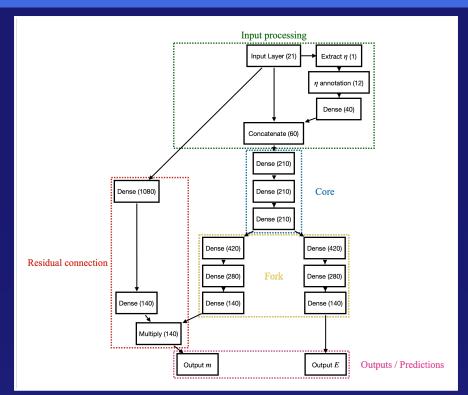


JES uncertainty vs. p_{\perp} : MPF method $Z^{0}(\rightarrow \mu^{+}\mu^{-})$ + jet

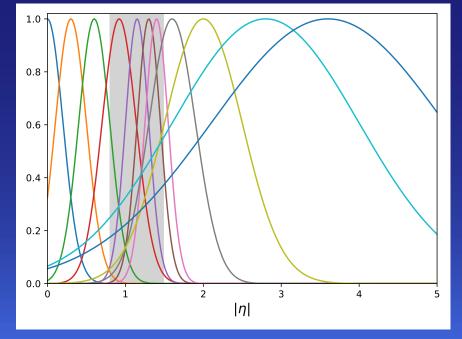
- Direct Balance (DB) is used in γ + jet events to measure the balance of γ against one (possibly b-tagged) jet
 Good at p⊥ > 100 GeV and for single b-jets
- Up to O(1%) precision on-top of general JES uncertainty

JES uncertainty vs. p_{\perp} : DB method γ + jet b-jet JES uncertainty vs. p_{\perp} : DB method γ + b-jet

- ► Large △R jets: good for boosted topologies of heavy resonances
 - The asymmetric response in energy and mass requires dedicated calibration for both
 - Both remain highly correlated though and a combined calibration approach is hence desirable
- Complex DNN with η annotation (adding 11 Gaussian η -dependent weights to input)
 - Inputs: Jet kinematics E, m, η , 8 jet substructure variables, 7 detector-level energy or p_{\perp} fractions, Pile-Up environment $N_{\rm PV}$, μ
 - Initial training for both *E* and *m*
 - Loss function is sum of negative log-likelihood predicting μ and σ of Gaussian distributions in E and m
 - Then fork and optimise separately for E and m (can freeze the other)
 - Residual connection for *m* improves the focus on most important inputs for *m*
- Trained on 270 M jets from fully simulated di-jet events (based on Pythia8 and Geant4; other generators, physics for cross-checks)

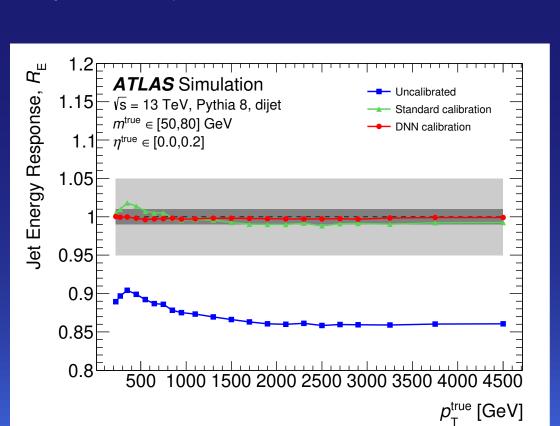


DNN architecture for *E* and *m*

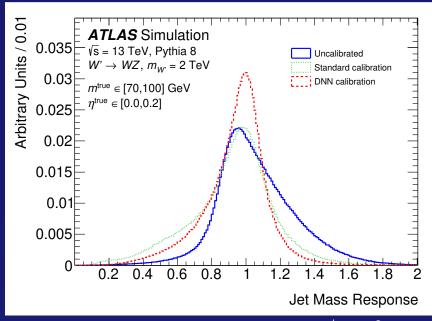


 η -annotation functions

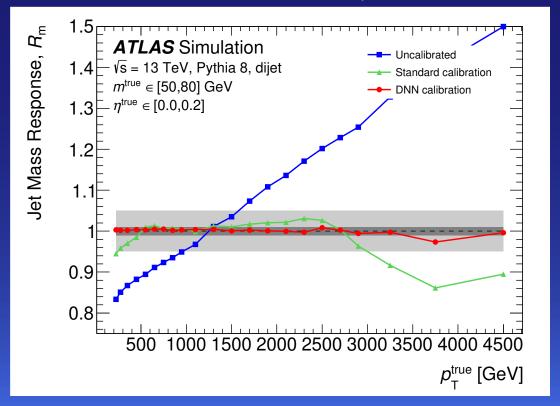
- Comparison of the DNN calibration (red) with standard calibration (green) and no calibration (blue)
 - DNN outperforms standard calibration in energy- and mass-scale closure and resolution for both *E* and *m*
 - Typical resolution improvement of > 30% for p_{\perp} > 500 GeV
 - Robust against Pile-Up
 - Performs also better on topologies not used in the training (boosted heavy bosons)



Energy response for different calibrations



Mass response for boosted W^{\pm} / Z^{0}

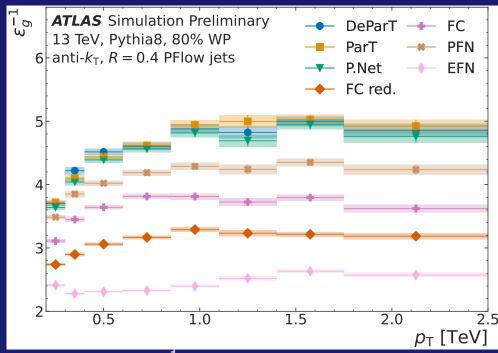


Mass response for different calibrations

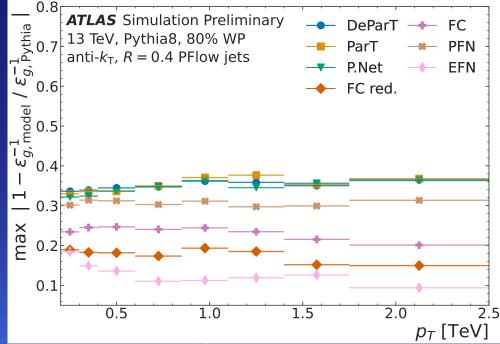
Identification methods

- Distinguishing jets initiated by different particles (light quark, gluon, heavy boson, top-quark) is extremely important to identify the final states
- We use machine learning (with different network architectures) for jet tagging on simulated samples
 - Trained either on high-level jet-based quantities
 - Restricted to infrared/collinear safe observables for some
 - Or with additional information from the jet constituents (flow objects)
- Performance is evaluated by comparing background rejection rate for a given signal efficiency for different taggers
- Model dependence is probed by applying the standard-sample trained tagger on different simulated samples with alternative showering and hadronization modelling

- Standard training is done on fully simulated di-jet MC with Pythia8
 - 10 M R = 0.4 anti- k_t PFO jets
- Networks with 10 (5) high-level jet quantities FCN (FC reduced)
- Particle Flow (PFN) and IRC-safe Energy Flow (EFN) Networks with constituent information: 8 for PFN (including mass), 4 linear ones for EFN
- Particle Net (P.Net), a graph NN with each constituent (and its 7 features) forming a node, connected via edges to k = 16 nearest neighbours
- Particle Transformer (ParT) and Dynamically Enhanced Particle Transformer (DeParT) with constituent features (like P.Net) and interaction variables on pairs of constituents
- PartT,DePartT and P.Net best in gluon rejection, but largest in model dependence; least model dependence in IRC-safe EFN

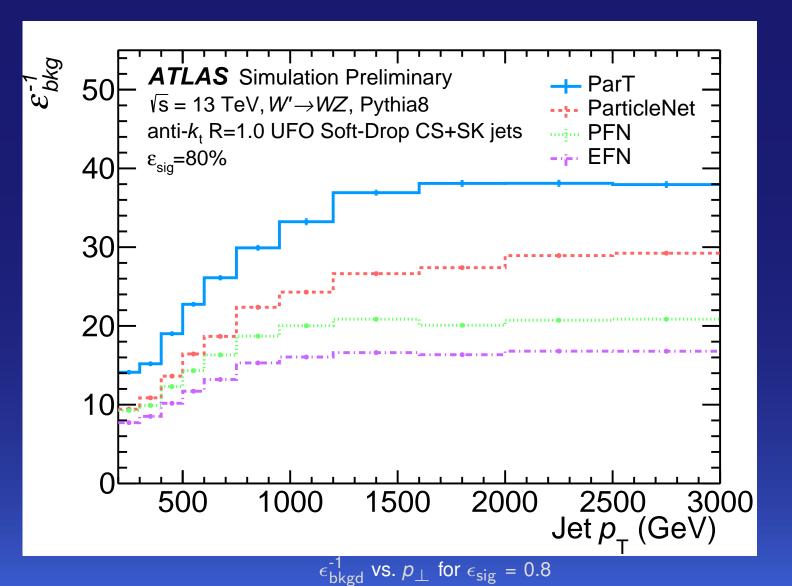


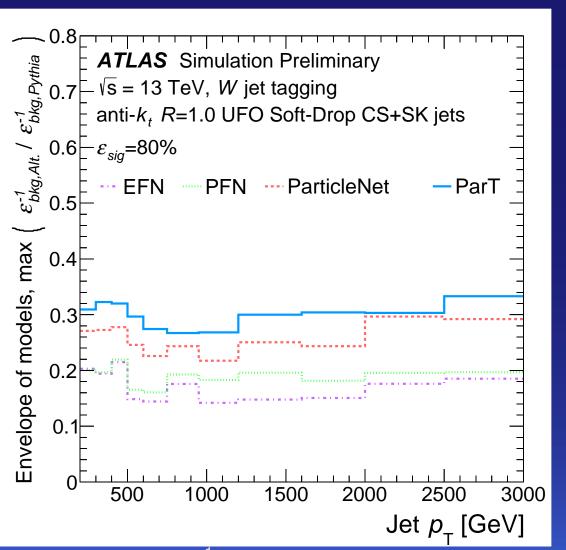
 $\epsilon_{\rm g}^{-1}$ vs. p_{\perp} for $\epsilon_{\rm q}=0.8$



Rel. deviation of $\epsilon_{
m g}^{-1}$ from std. sample for $\epsilon_{
m q}=0.8$

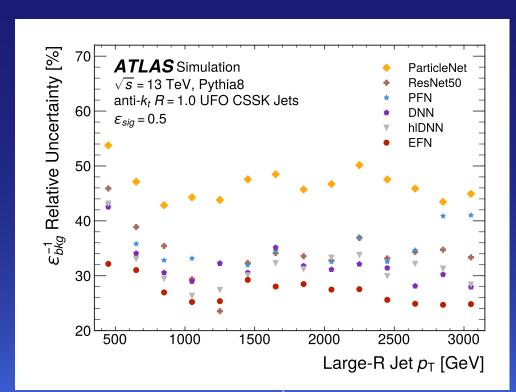
- PFN, EFN, P.Net and ParT are trained on Pythia8 generated large R=1.0 anti- $k_{\rm t}$ UFO jets from W' \to WZ events and Pythia8 generated multi-jet background
- ParT with highest bkgd rejection (and largest model dependence), EFN smallest in both



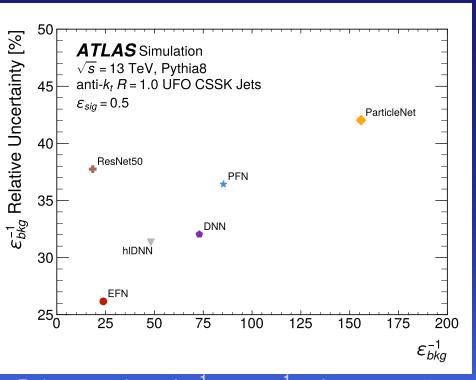


Rel. deviation of $\epsilon_{\text{bkgd}}^{-1}$ from std. sample for $\epsilon_{\text{sig}} = 0.8$

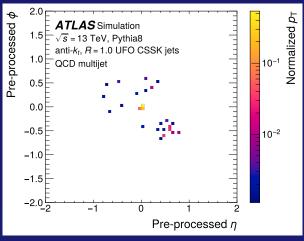
- Baseline hlDNN (high-level-jet info) compared to constituent based DNN, PFN, EFN, P.Net and ResNet50 are trained on Pythia8 generated large R=1.0 anti- k_t UFO jets from $Z' \to t\bar{t}$ events and Pythia8 generated multi-jet background
- ResNet50 is an image classification CNN
 - ▶ Turn every jet into a 2*D* image of energies of 64 × 64 rotated $\Delta \eta \times \Delta \phi$ pixels
- "Bottom-up" experimental uncertainites evaluated in addition to model-dependence
- P.Net with highest bkgd rejection (and largest model dependence), EFN smallest uncertainty; ResNet50 worst rejection, 2nd largest uncertainty



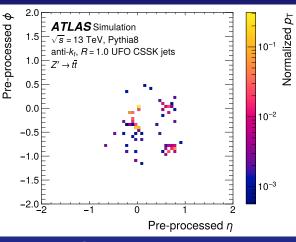
Rel. uncertainty of $\epsilon_{\rm bkgd}^{-1}$ for $\epsilon_{\rm sig}=0.5$



Rel. uncertainty of $\epsilon_{\rm bkgd}^{-1}$ vs. $\epsilon_{\rm bkgd}^{-1}$ for $\epsilon_{\rm sig}=0.5$



Background jet image



Signal jet image

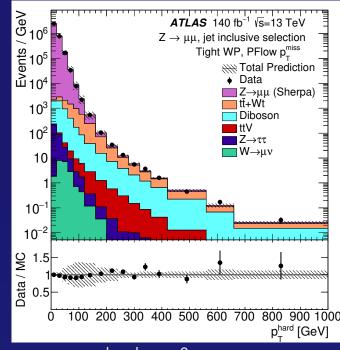
2D missing transverse momentum vector p_{\perp}^{miss} is derived from $\mathbf{p}^{\text{obj}} = (p_x^{\text{obj}}, p_y^{\text{obj}})$ from all "hard" objects (obj) and a remaining "soft" term from "unused" tracks p^{track} :

$$p_{\perp}^{\text{miss}} = -p_{\perp}^{\text{hard}} - p_{\perp}^{\text{soft}}$$
, with $p_{\perp}^{\text{hard}} = \sum_{\text{obj}=e,\gamma,\tau,\mu,jet} p_{\perp}^{\text{obj}}$ and $p_{\perp}^{\text{soft}} = \sum_{\text{unused tracks}} p_{\perp}^{\text{track}}$

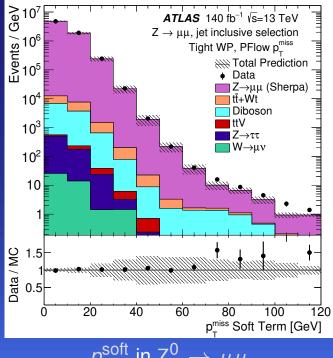
Scalar transverse momentum sum to evaluate the scale:

$$\sum p_{\perp} = \sum_{\text{obj}=e,\gamma,\tau,\mu,\text{jet}} p_{\perp}^{\text{obj}} + \sum_{\text{unused tracks}} p_{\perp}^{\text{track}}$$

- Run-2 performance updated with full Run-2 dataset for use of PFlow objects for jets
- Evaluation in $Z^0 \to \mu\mu$ and $Z^0 \to ee$ events (no real p_{\perp}^{miss} expected)
 - Dominant systematic in p_{\perp}^{hard} from JES (bump at \sim 100 GeV)
 - Small excess in p_{\perp}^{soft} tail in data from fake electrons



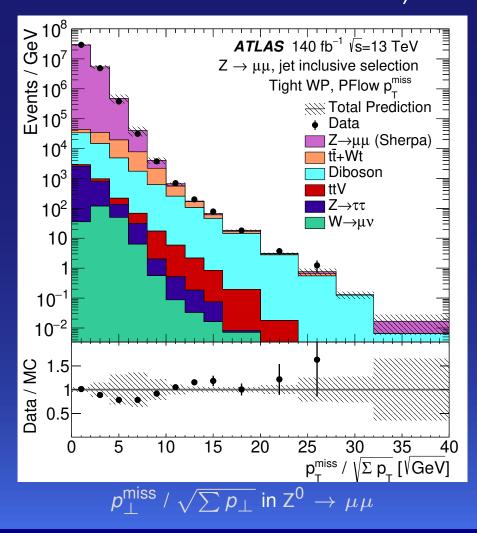
$$p_{\perp}^{\mathrm{hard}} \text{ in Z}^{\mathrm{0}}
ightarrow \mu \mu$$



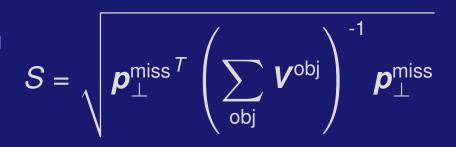
$$p_{\perp}^{
m soft}$$
 in ${
m Z}^0 o \mu \mu$

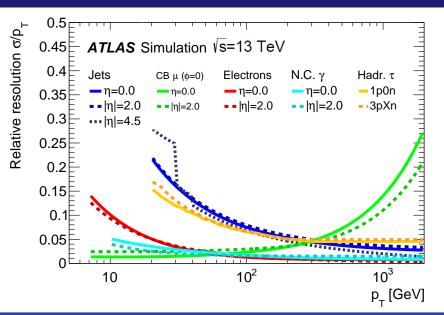
Event-based significance $S_{H_{\perp}} = p_{\perp}^{\text{miss}} / \sqrt{H_{\perp}}$ is based on $H_{\perp} = \sum p_{\perp}^{\text{jet}}$, which is

approximate only (assumes calorimeter-like resolution)

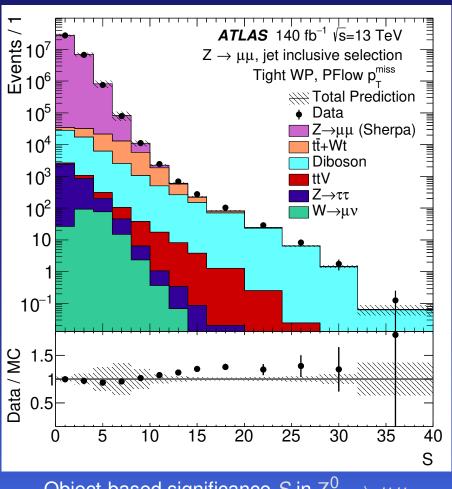


Missing transverse momentum significance evaluated on object-based uncertainties *V*:





Relative resolutions of the objects entering p_{\perp}^{miss}



Object-based significance S in $Z^0 \rightarrow \mu\mu$

Conclusions

- Reconstruction and calibration of hadronic objects in ATLAS is a very active field
 - Pile-Up remains the biggest challenge
 - Time as a new discriminant in calorimetry helps reducing it
 - New ML-based techniques start to replace legacy calibration methods for energy and mass
- Run-2 performance results:
- Jet calibration
 - O(1%) precision reached for jet energy scale, O(15 30%) improvements in resolution for energy and mass
 - Additional b-jet energy scale uncertainty measured to O(1%)
- Jet tagging
 - q/g, heavy-boson and t-quark taggers based on ML with constituent information outperform taggers with high-level jet info
 - But model dependence is larger for constituent based taggers
- Missing transverse momentum
 - Benefits from reconstruction and calibration advancements especially from jets
 - Object-based significance sharpens the MET discrimination power
- Run-3 analyses benefit from these improvements