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Hadronic objects in ATLAS
� Jets in ATLAS are made out of topological clusters (calorimeter) and charged particle tracks (inner

detector)
� Clusters and tracks are combined to form higher level objects (with 4-vectors) as input to

jet-clustering
� Particle Flow Objects (PFO) for small and large ∆R jets (see sketch)

Eur.Phys.J.C77(2017)466

Flow chart particle flow algorithm

� Track-CaloClusters (TCC) for large ∆R jets (splitting the cluster energy to all matching tracks
with track’s p⊥-fraction in matched tracks as weight, ATL-PHYS-PUB-2017-015)
� Unified Flow Objects (UFO) for large ∆R jets combine PFO and TCC depending on
environment to make best of both Eur.Phys.J.C81(2020)334)

� Jet clustering is performed with FastJet – anti-kt with ∆R = 0.4 (small) or ∆R = 1.0 (large)
� Jets are then calibrated in several steps for energy (p⊥), momentum direction and mass (for large

∆R)
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Di-jet event in Run-3 twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun3Collisions

Run-3 collision event at 13.6 TeV recorded in ATLAS on 5 July 2022
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Pile-Up impact on calorimeter signals in ATLAS

� Pile-Up characteristics
• µ: Average number of interactions per crossing ∼ 50 in Run-3
• ∆t : Bunch distance 24.95 ns
• Signal integration time for the LAr-calorimeters ∼ 500 ns

twiki.cern.ch/twiki/bin/view/AtlasPublic/
LuminosityPublicResultsRun3
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) � Typical LHC bunch structure in 2022-2024

• 2340 colliding bunch pairs (2835 is
theoretical max)

• 23 trains ∼ 800 ns apart (LHC injection)
• 2-3 sub-trains with gaps of 200 ns (SPS

injection)
• 36 filled bunches per sub-train

� Pile-Up impact depends on bunch crossing Number
(BCID)
� Up to 20 colliding bunch pairs contribute to signal

� See arXiv:2407.10819, where ATLAS turns noise
into data: Using pileup for physics

twiki.cern.ch/twiki/bin/view/AtlasPublic/
LArCaloPublicResults2015
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Topological clustering

� Jet constituents, τ±, e± and γ are made out of topological cell clusters (TopoClusters)

• 3d energy blobs of neighbouring
calorimeter cells around seeds
with |E | > 4σ

• Direct seed neighbours with
|E | > 2σ become seeds too

• Proto-clusters are re-clustered
around local energy maxima

• σ is the expected noise
≡ σelec ⊕ σpile-up

Eur.Phys.J.C77(2017)490
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� Calorimeters have excellent time resolution!
• Intrinsic time resolution in LAr samplings is ∼ 60 ps at high energies
• Time has always been reconstructed alongside energy since the

beginning of data taking
• Added recently to the topological clustering algorithm as additional

discriminator (cut at |t | < 12.5 ns) for any cell that has |E | > 4σ
• But restrict the time cut to those cells with E < 20σ

� To keep significant, positive energy deposits that are out-of-time
(searches for exotic, long-lived particles)
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Time as a new discriminant
twiki.cern.ch/twiki/bin/view/AtlasPublic/LArCaloPublicResults2015
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LAr cell energy sums above 100 MeV Inside default clusters Inside clusters with time discrimination

� New default
in Run-3

� New time discriminant further reduces residual out-of-time (OOT) Pile-Up that
was not suppressed by default topological clustering
� Entire clusters are removed (reduces background)

� And cells inside clusters are removed (improves signal, see plots above)

� removes OOT Pile-Up jets (see plot to the right)
• By ∼ 50% at p⊥ ≃ 20GeV; by ∼ 80% at p⊥ ≥ 50GeV
• Number of in-time jets remains unchanged
• Resolution improves by ∼ 5%

� Removes fakes for τ±, e± / γ

Eur.Phys.J.C84(2024)455
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Calibration methods

� Local Hadronic Calibration (a.k.a. Local Cell Weighting, LCW, Eur.Phys.J.C77(2017)490)
• 4 step procedure to bring the energy scale of clusters from the raw ”EM”-scale to the particle-level

”LC”-scale
• Classification: Compute EM-probability pEM form shapes
• Cell-weighting: Apply hadronic (HAD) and electromagnetic (EM) weights:

� wcell = (1 - pEM)wHAD + pEMwEM

• For 3 different corrections:
� Corrections for hadronic non-compensation
� Corrections for out-of-cluster deposits
� Corrections for out-of-calorimeter (dead-material) deposits

� Jets (Eur.Phys.J.C81(2021)689)
• Can use either EM- or LC-scale objects (clusters or flow objects)
• Are corrected for Pile-Up (jet-area correction and residual Pile-Up correction)
• Get their energy corrected by MC-derived Jet-Energy-Scale correction
• Flavour dependency and resolution gets improved by Global-Calibration (MC-derived, keeping average

energy scale constant)

• Data is corrected in-situ from measured p⊥ balance of jets in multi-jet and Z0 / γ + jet events to match MC
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Cluster calibration with neural networks ATL-PHYS-PUB-2023-019

� Idea: Apply machine learning to Local Hadronic Calibration
• To explore the applicability of neural networks to calorimetric calibration
• So far done with the first of the three correction steps (non-compensation) and implicit classification

� Biggest difference to legacy LCW: Pile-Up is included
• Out-of-cluster and dead-material corrections still to come

� Input quantities for the NNs:
• Kinematics: (EEM

clus, yEM
clus) • Significance: (Eclus / σclus) • Time: (tclus, Varclus(tcell)) • Cluster moments: (depth,

centroid, EM-fraction, energy density, lateral and longitudinal dispersion, compactness) • Environment:
(isolation, NPV, µ)
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� Trained NNs:
• Deep Neural Net (DNN) with leaky Gaussian kernel
• Bayesian Neural Net (BNN) with regularised negative

log-likelihood

� Linearity (left) and resolution (right) of NNs
compared to EM- and LC-scale on simulated
clusters from di-jets with Pile-Up

• NNs outperform legacy LCW (removal of Pile-Up)
� but Pile-Up removal is not part of LCW ...

• DNN slightly better than BNN
• Encouraging result to implement the other steps
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New techniques for jet calibration � Global calibration Eur.Phys.J.C83(2023)761

� Global-Calibration is applied to jets after setting the jet energy
scale (MCJES) (based on MC simulations and energy E and
pseudo-rapidity η of the jet)

� Global Sequential Calibration (GSC) (used for Run-2)
• Uses many kinematic observables in addition to p⊥: • Charged

p⊥ fraction fcharged • Energy fractions in first Tile & third EM layer
fTile0 • fLAr3 • Number of tracks Ntrack • p⊥-weighted average track
distance wtrack • Number of associated muon segments Nsegments
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p⊥ response after MCJES• Since JES is kept unchanged, the six corrections can be applied
and checked independently of each other � Requires uncorrelated observables

� Global Neural Network Calibration (GNNC) (new, will be used for Run-3)
• Alternative to GSC
• Trains a DNN with jet observables for a simultaneous correction to p⊥ and leaky Gaussian kernel

loss-function
� Allows the use of correlated variables; is allowed to change JES

• In addition to the GSC observables it uses: • 12 more (i.e. all 14) layer energy fractions
fLAr0-3,Tile0-2,HEC0-3,FCal0-2 • Number of clusters with 90% energy N90% • η • Pile-Up variables µ, NPV

S. Menke, MPP München � New techniques for reconstructing, calibrating and identifying hadronic objects with ATLAS � Blois2024, 24 Oct 2024, Blois 9

http://dx.doi.org/10.1140/epjc/s10052-023-11837-9
https://www.mpp.mpg.de/~menke


New techniques for jet calibration � Global calibration Eur.Phys.J.C83(2023)761

� Closure and resolution in p⊥ compared after MCJES, MCJES+GSC and MCJES+GNNC (here for
0.2 < |η| < 0.7, similar results in all other η-regions)

� Small non-closure for GSC at low p⊥ stems from MCJES (GSC keeps JES unchanged)
� GNNC does change JES and hence improves the MCJES closure at low p⊥

� Resolution improves by 15 - 25% for GNNC compared to GSC
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New techniques for jet calibration � Jet Energy Scale uncertainty Eur.Phys.J.C83(2023)761

� Z0 + jet and γ + jet data are compared in-situ to simulations to
bring the final JES in data to simulation level (after MCJES+GNNC
and in-situ η-intercalibration with multi-jet events)

� Missing-E⊥ Projection Fraction (MPF) is used to calculate
p⊥-balance between Z0 / γ and the full hadronic recoil
� best for Pile-Up and lower p⊥

� O(1%) precision is achieved over a large p⊥-range 20 30 40 100 200 300 1000
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� Direct Balance (DB) is used in γ + jet
events to measure the balance of γ
against one (possibly b-tagged) jet
� Good at p⊥ > 100GeV and for single
b-jets

� Up to O(1%) precision on-top of
general JES uncertainty
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Calibration of E and m of large ∆R-jets arXiv:2311.08885

� Large ∆R jets: good for boosted topologies of heavy
resonances
• The asymmetric response in energy and mass requires

dedicated calibration for both
• Both remain highly correlated though and a combined

calibration approach is hence desirable
� Complex DNN with η annotation (adding 11 Gaussian

η-dependent weights to input)
• Inputs: Jet kinematics E , m, η, 8 jet substructure variables,

7 detector-level energy or p⊥ fractions, Pile-Up
environment NPV, µ

• Initial training for both E and m
• Loss function is sum of negative log-likelihood predicting µ

and σ of Gaussian distributions in E and m
• Then fork and optimise separately for E and m (can freeze

the other)
• Residual connection for m improves the focus on most

important inputs for m
� Trained on 270M jets from fully simulated di-jet events (based

on Pythia8 and Geant4; other generators, physics for
cross-checks)

DNN architecture for E and m
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Calibration of E and m of large ∆R-jets arXiv:2311.08885

� Comparison of the DNN calibration (red) with standard calibration
(green) and no calibration (blue)
• DNN outperforms standard calibration in energy- and mass-scale

closure and resolution for both E and m
• Typical resolution improvement of > 30% for p⊥ > 500GeV
• Robust against Pile-Up
• Performs also better on topologies not used in the training (boosted

heavy bosons)
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Identification methods

� Distinguishing jets initiated by different particles (light quark, gluon, heavy boson, top-quark) is
extremely important to identify the final states

� We use machine learning (with different network architectures) for jet tagging on simulated
samples
• Trained either on high-level jet-based quantities

� Restricted to infrared/collinear safe observables for some
• Or with additional information from the jet constituents (flow objects)

� Performance is evaluated by comparing background rejection rate for a given signal efficiency for
different taggers

� Model dependence is probed by applying the standard-sample trained tagger on different
simulated samples with alternative showering and hadronization modelling
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Identification methods � Quark/gluon tagger ATL-PHYS-PUB-2023-032

� Standard training is done on fully simulated di-jet MC with
Pythia8
• 10M R = 0.4 anti-kt PFO jets

� Networks with 10 (5) high-level jet quantities FCN (FC reduced)
� Particle Flow (PFN) and IRC-safe Energy Flow (EFN) Networks

with constituent information: 8 for PFN (including mass), 4
linear ones for EFN

� Particle Net (P.Net), a graph NN with each constituent (and its
7 features) forming a node, connected via edges to k = 16
nearest neighbours

� Particle Transformer (ParT) and Dynamically Enhanced Particle
Transformer (DeParT) with constituent features (like P.Net) and
interaction variables on pairs of constituents

� PartT,DePartT and P.Net best in gluon rejection, but largest in
model dependence; least model dependence in IRC-safe EFN
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Identification methods � W-boson tagger ATL-PHYS-PUB-2023-020

� PFN, EFN, P.Net and ParT are trained on Pythia8 generated large R = 1.0 anti-kt UFO jets from
W′ → WZ events and Pythia8 generated multi-jet background

� ParT with highest bkgd rejection (and largest model dependence), EFN smallest in both
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Identification methods � Top-quark tagger JINST19(2024)P08018

� Baseline hlDNN (high-level-jet info) compared to constituent based DNN, PFN, EFN,
P.Net and ResNet50 are trained on Pythia8 generated large R = 1.0 anti-kt UFO jets
from Z′ → t̄t events and Pythia8 generated multi-jet background

� ResNet50 is an image classification CNN
� Turn every jet into a 2D image of energies of 64 × 64 rotated ∆η ×∆ϕ pixels

� ”Bottom-up” experimental uncertainites evaluated in addition to model-dependence
� P.Net with highest bkgd rejection (and largest model dependence), EFN smallest

uncertainty; ResNet50 worst rejection, 2nd largest uncertainty
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Missing transverse momentum arXiv:2402.05858

� 2D missing transverse momentum vector pmiss
⊥ is derived from

pobj
⊥ = (pobj

x ,pobj
y ) from all ”hard” objects (obj) and a remaining ”soft” term from

”unused” tracks ptrack
⊥ :

pmiss
⊥ = -phard

⊥ - psoft
⊥ , with phard

⊥ =
∑

obj=e,γ,τ ,µ,jet

pobj
⊥ and psoft

⊥ =
∑

unused tracks

ptrack
⊥

� Scalar transverse momentum sum to evaluate the scale:∑
p⊥ =

∑
obj=e,γ,τ ,µ,jet

pobj
⊥ +

∑
unused tracks

ptrack
⊥

� Run-2 performance updated with full Run-2 dataset for use of PFlow objects
for jets

� Evaluation in Z0 → µµ and Z0 → ee events (no real pmiss
⊥ expected)

• Dominant systematic in phard
⊥ from JES (bump at ∼ 100GeV)

• Small excess in psoft
⊥ tail in data from fake electrons
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Missing transverse momentum arXiv:2402.05858

� Event-based significance
SH⊥ = pmiss

⊥ /
√

H⊥ is based on
H⊥ =

∑
jet

pjet
⊥ , which is

approximate only (assumes
calorimeter-like resolution)

� Missing transverse momentum
significance evaluated on
object-based uncertainties V :

S =

√√√√√pmiss
⊥

T

∑
obj

V obj

-1

pmiss
⊥
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Conclusions
� Reconstruction and calibration of hadronic objects in ATLAS is a very active field

• Pile-Up remains the biggest challenge
• Time as a new discriminant in calorimetry helps reducing it
• New ML-based techniques start to replace legacy calibration methods for energy and mass

� Run-2 performance results:
� Jet calibration

• O(1%) precision reached for jet energy scale, O(15 - 30%) improvements in resolution for energy and
mass

• Additional b-jet energy scale uncertainty measured to O(1%)
� Jet tagging

• q/g, heavy-boson and t-quark taggers based on ML with constituent information outperform
taggers with high-level jet info

• But model dependence is larger for constituent based taggers
� Missing transverse momentum

• Benefits from reconstruction and calibration advancements – especially from jets
• Object-based significance sharpens the MET discrimination power

� Run-3 analyses benefit from these improvements
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