

Neutrino Cross Sections with NOvA

Kevin Vockerodt on behalf of the NOvA Collaboration

35th Rencontres de Blois Thursday 24th October 2024

The NOvA Experiment

- Long baseline neutrino experiment, consisting of: ٠
 - NuMI beam: high purity (anti)neutrino beam produced at Fermilab ٠
 - Forward horn current (FHC) mode for a muon neutrino (ν_{μ}) beam •
 - Reverse horn current (RHC) mode for a muon antineutrino ($\overline{\nu}_{\mu}$) beam •
 - Near Detector: 1km from the source, 100m underground •
 - Far Detector: 810km from the source in Ash River, Minnesota, at ground level ٠

Kevin Vockerodt 24 October 2024

The NOvA Experiment

- Long baseline neutrino experiment, consisting of: ٠
 - NuMI beam: high purity (anti)neutrino beam produced at Fermilab ٠
 - Forward horn current (FHC) mode for a muon neutrino (ν_{μ}) beam •
 - Reverse horn current (RHC) mode for a muon antineutrino ($\overline{\nu}_{\mu}$) beam •
 - Near Detector: 1km from the source, 100m underground •
 - Far Detector: 810km from the source in Ash River, Minnesota, at ground level ٠
- Detectors are 14.6 mrad off-axis and functionally identical, helping to reduce ٠ systematic uncertainties

Kevin Vockerodt 24 October 2024

The NOvA Experiment

- Long baseline neutrino experiment, consisting of: ٠
 - NuMI beam: high purity (anti)neutrino beam produced at Fermilab ٠
 - Forward horn current (FHC) mode for a muon neutrino (ν_{μ}) beam •
 - Reverse horn current (RHC) mode for a muon antineutrino ($\overline{\nu}_{\mu}$) beam •
 - Near Detector: 1km from the source, 100m underground •
 - Far Detector: 810km from the source in Ash River, Minnesota, at ground level ٠
- Detectors are 14.6 mrad off-axis and functionally identical, helping to reduce ٠ systematic uncertainties
- Three research goals: •

leen Mary

University of Londor

- Observe and measure oscillation of v_{μ} to v_{e} ٠
- Determine neutrino mass ordering •
- Investigate matter / antimatter asymmetry •

Kevin Vockerodt 24 October 2024

The NOvA Near Detector

- 300t tracking calorimeter
- Extruded plastic (PVC) cells filled with liquid scintillator
- Alternating planes allow for 3D reconstruction

The NOvA Near Detector

- 300t tracking calorimeter
- Extruded plastic (PVC) cells filled with liquid scintillator
- Alternating planes allow for 3D reconstruction

Co	NOvA mposi	Detection (by	tor y mas	s)
Н	С	Cl	0	Ti
11%	67%	16%	3%	3%

The NOvA Near Detector

- 300t tracking calorimeter
- Extruded plastic (PVC) cells filled with liquid scintillator
- Alternating planes allow for 3D reconstruction

Why are Cross Sections Important in Oscillation Analyses?

To understand neutrino oscillations, we need to make precision measurements of the neutrino mixing angles (e.g. θ_{23} and θ_{13}) and mass splittings (e.g. Δm_{32}^2).

Why are Cross Sections Important in Oscillation Analyses?

Why are Cross Sections Important in Oscillation Analyses?

To understand neutrino oscillations, we need to make precision measurements of the neutrino mixing angles (e.g. θ_{23} and θ_{13}) and mass splittings (e.g. Δm_{32}^2).

Oscillation probability (electron neutrino appearance) $P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\frac{1.27\Delta m_{32}^{2}L \,[\text{km}]}{E \,[\text{GeV}]}$

- *L* Distance between detectors
- *E* Mean neutrino beam energy

Measured event rate
$$R(\vec{x}) = \int_{E_{\min}}^{E_{\max}} \Phi(E_{\nu}) \times \sigma(E_{\nu}, \vec{x}) \times \epsilon(\vec{x}) \times P(\nu_{\mu} \to \nu_{e})$$

 $\Phi(E_{\nu})$ Neutrino flux

- $\sigma(E_{\nu}, \vec{x})$ Cross section
 - $\epsilon(\vec{x})$ Detector response / efficiency

Cross Section Uncertainties

- Until recently, neutrino experiments have been statistically-limited, with a statistical uncertainty ~10 25%
- But next-generation experiments, e.g. DUNE and Hyper-K expect to observe up to two orders of magnitude more events, reducing statistical uncertainties to ~3% for v_e and ~1% for v_{μ}
- We are therefore entering an era where uncertainties are systematics-dominant, so we need better constraints

Neutrino Interactions and Nuclear Effects

Neutrino Interactions and Nuclear Effects

The NOvA Simulation

- The most recent NOvA simulation uses GENIE 3.0.6 as its base model, but some some analyses shown today use GENIE v2
- MEC and FSI are adjusted to data to produce a NOvA-specific tuned interaction model
- This tuning is performed in variables that are different to this analysis
- The MEC tune was developed using neutrino data and then applied to antineutrinos

GENIE version	Initial State	QE	MEC	RES/COH	DIS	FSI
2.10.2 / 2.12.2	Relativistic Fermi Gas (RFG)	Llewellyn- Smith	Empirical	Rein- Sehgal (RS)	Bodek-Yang + Pythia	hA (one effective interaction)
3.0.6	Local Fermi Gas (LFG)	València + Z-expansion	València	Berger- Sehgal (BS)	Bodek-Yang + Pythia	hN (semi-classical cascade model – many possible interactions)

$\overline{\nu}_{\mu}$ CC-inclusive Cross Section Analysis Genie 3.0.6

- Signal: $\overline{\nu}_{\mu}$ CC interaction with interaction vertex in the fiducial volume of the ND
- $\overline{\nu}_{\mu} + A \rightarrow \mu^{+} + X$
- A is the target nucleus, X represents all other final state particles
- Deliverables:
 - Triple differential cross section in T_{μ} , $\cos \theta_{\mu}$ and E_{avail}
 - 1D measurement of E_{ν} and Q^2

Credit: Travis Olson

(Paper currently in preparation)

Signal: $\overline{\nu}_{\mu}$ CC interaction with interaction vertex in the fiducial volume of the ND $\overline{\nu}_{\mu} + A \rightarrow \mu^+ + X$

- *A* is the target nucleus, *X* represents all other final state particles
- Deliverables:

leen Mary

- Triple differential cross section in T_{μ} , $\cos \theta_{\mu}$ and E_{avail}
- 1D measurement of E_{ν} and Q^2
- E_{avail}:

GENIE 3.0.6

- Variable introduced by the MINERvA collaboration: Phys. Rev. Lett. 116, 071802 (2016)
- It comprises of the total visible hadronic energy
- Neutrons are not directly visible and do not contribute to E_{avail} , but any daughter particles of primary neutrons do contribute
- Different regions of E_{avail} phase space enhance different interaction types

Credit: Travis Olson

$\overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}}$ CC-inclusive: Triple Differential Cross Section Measurement Strategy

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{sel}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{targets}\Phi}$$

i truth space *j* reco space

$\overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}}$ CC-inclusive: Triple Differential Cross Section Measurement Strategy

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{\text{sel}}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{\text{targets}}\Phi}$$

i truth space *j* reco space

 $N^{\text{sel}}(\cos \theta_{\mu}, T_{\mu}, E_{avail})_{i}$ Number of selected events

$\overline{\boldsymbol{\nu}}_{\boldsymbol{\mu}}$ CC-inclusive: Triple Differential Cross Section Measurement Strategy

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{sel}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{targets}\Phi}$$

i truth space *j* reco space

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{sel}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{targets}\Phi}$$

 $\frac{i \text{ truth space}}{j \text{ reco space}}$ $\frac{i \text{ truth space}}{j \text{ reco space}}$ $\frac{P(\cos \theta_{\mu}, T_{\mu}, E_{avail})_{j}}{U_{ij}}$ Purity of sample (estimated from simulation) $Unfolding Matrix - to migrate from reco to truth space, using D'Agostini iterative unfolding}$

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{sel}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{targets}\Phi}$$

 $\frac{i \text{ truth space}}{j \text{ reco space}}$ $\frac{i \text{ truth space}}{j \text{ reco space}}$ $\frac{P(\cos \theta_{\mu}, T_{\mu}, E_{avail})_{j}}{U_{ij}}$ Purity of sample (estimated from simulation) $\frac{U_{ij}}{(\cos \theta_{\mu}, T_{\mu}, E_{avail})_{j}}$ Efficiency of sample (estimated from simulation)

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{sel}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{targets}\Phi}$$

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{sel}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{targets}}\Phi$$

$$\left(\frac{d^{3}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}\,dE_{avail}}\right)_{i} = \frac{\sum_{j}U_{ij}\left(N^{sel}\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}P\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{j}\right)}{\epsilon\left(\cos\theta_{\mu},T_{\mu},E_{avail}\right)_{i}\left(\Delta\cos\theta_{\mu}\right)_{i}\left(\Delta T_{\mu}\right)_{i}\left(\Delta E_{avail}\right)_{i}N_{targets}\Phi}$$

$\overline{\nu}_{\mu}$ CC-inclusive Data Results: 0 < E_{avail} < 100 MeV

GENIE 3.0.6

- Results presented by E_{avail} bin, then in panels of varying angle
- The smallest E_{avail} bin (0 100 MeV) makes up 48% of the total sample
- Consists mainly QE and MEC events
- The NOvA tune shows good agreement with data since this region of E_{avail} phase space is MEC-enhanced
- **GENIE 'out-of-the-box'** underpredicts in all angle bins

$\overline{\nu}_{\mu}$ CC-inclusive Data Results: 0 < E_{avail} < 100 MeV

GENIE 3.0.6

- Comparisons can also be made with alternative neutrino event generators
- NuWro has a different shape it uses a different QE interaction model (Llewellyn-Smith)
- **GiBUU** is the most consistent with NOvA data in this region of phase space it is doing a good job of modelling QE and MEC interactions

$\overline{\nu}_{\mu}$ CC-inclusive Data Results: 300 < E_{avail} < 600 MeV

GENIE 3.0.6

- The 300 600 MeV E_{avail} bin makes up 14% of the total sample
- Dominated by RES interactions
- Also rich in DIS events
- The NOvA tune and GENIE 'out-ofthe-box' both overpredict data in this region of phase space

$\overline{\nu}_{\mu}$ CC-inclusive Data Results: 300 < E_{avail} < 600 MeV

GENIE 3.0.6

- In this region, generators all perform differently
- **NEUT** is the most consistent with data
- **GiBUU** mostly underpredicts compared with data

$\overline{\nu}_{\mu}$ CC-inclusive Data Results: E_{ν} and Q^2

GENIE 3.0.6

Queen Mary

University of London

- NOvA-tuned GENIE slightly overpredicts data
- Except at the extremes in E_{ν} and at very low Q^2 , all generators underpredict data
- Discrepancies lie mainly in the normalisation, but the shape is generally in agreement

v_{μ} CC Low Hadronic Activity Analysis GENIE 2.12.2

- Signal: ν_{μ} CC interaction with interaction vertex in the fiducial volume of the ND, with $T_{proton} \leq 250$ MeV, $T_{\pi} \leq 175$ MeV
- Selection: v_{μ} CC interaction with one reconstructed particle (the muon)
- Aim: to select a sample enhanced in QE and 2p2h, since RES and DIS are likely to produce at least two reconstructed particles

Kevin Vockerodt 24 October 2024

arXiv:2410.10222

ν_{μ} CC Low Hadronic Activity Analysis GENIE 2.12.2

- Signal: ν_{μ} CC interaction with interaction vertex in the fiducial volume of the ND, with $T_{proton} \leq$ 250 MeV, $T_{\pi} \leq$ 175 MeV
- Selection: v_{μ} CC interaction with one reconstructed particle (the muon)
- Aim: to select a sample enhanced in QE and 2p2h, since RES and DIS are likely to produce at least two reconstructed particles
- Analysis performed in T_{μ} , $\cos \theta_{\mu}$ and E_{avail} then integrated over E_{avail} to report a 2D differential cross section
- Also, 1D measurements of $E_{
 m v}$ and Q^2

arXiv:2410.10222

ν_{μ} CC Low Hadronic Activity Analysis GENIE 2.12.2

- Comparisons can be made to various 2p2h models
- **NOvA-tune** overestimates slightly in most bins, but still within error band
- **GiBUU** is the outlier, predicting a significantly higher cross section
- Other models (empirical MEC, MINERvA-tuned MEC, Valencia model, SuSA-v2 model) all predict a cross section lower than data

Kevin Vockerodt 24 October 2024

arXiv:2410.10222

Double Differential Measurement of $|\vec{q}|$ and E_{avail}

GENIE 2.12.2

- This analysis reports the 3-momentum transfer to the hadronic system, and E_{avail} , both as a double differential and as two 1D differential measurements
- Various 2p2h-MEC models are again compared to data
- The two theory-based models, SuSAv2 and Valencia, greatly underpredict in the region of the rising slope of $d\sigma/d|\vec{q}|$ and at the cross section peaks

arXiv:2410.05526

2p2h Excess Cross Section

GENIE 2.12.2

 Templates of GENIE-based simulations of QE, RES, DIS and other interactions (mainly coherent scattering and inverse muon decay) are subtracted, to obtain a 2p2h excess cross section

Available energy (GeV)

0.5

• The two theory-based models are consistently below data, as is GENIE empirical MEC in most regions of $|\vec{q}|$, but the error bars are very large

Kevin Vockerodt 24 October 2024

Three-momentum transfer (GeV/c)

1.5

Excess cross section

arXiv:2410.05526

2p2h Excess Cross Section

GENIE 2.12.2

- Templates of GENIE-based simulations of QE, RES, DIS and other interactions (mainly coherent scattering and inverse muon decay) are subtracted, to obtain a 2p2h excess cross section
- The two theory-based models are consistently below data, as is GENIE empirical MEC in most regions of $|\vec{q}|$, but the error bars are very large
- The data-driven MINERvA and NOvA tunes match data more closely, which we can see from comparisons using χ^2 with covariances

2p2h-MEC Model	χ^2	$\chi^2/{ m DoF}$	Shape Only
NOvA tune 2p2h	103	4.69	3.90
GENIE Empirical	185	8.40	7.99
MINERvA tune 2p2h	84.4	3.83	4.11
SuSAv2 2p2h	177	8.04	9.15
València 2p2h	347	15.8	18.6

ν_{μ} CC-inclusive π^{0} Production Genie 2.10.2

- $\nu_{\mu} + A \rightarrow \mu^- + \pi^0 + X$
- A is the target nucleus, X represents all other final state particles, including other neutral or charged pions
- Detected mainly via the decay channel $\pi^0 \rightarrow \gamma \gamma$ (branching ratio of 98.8%)
- Measured total cross section, $(3.57 \pm 0.44) \times 10^{-39} \text{ cm}^2/\text{nucleon}$, is 7.5% higher than the GENIE prediction, but within the range of uncertainties

$\nu_{\mu} \text{ CC-inclusive } \pi^0 \text{ Production}$ Genie 2.10.2

- $\nu_{\mu} + A \rightarrow \mu^- + \pi^0 + X$
- A is the target nucleus, X represents all other final state particles, including other neutral or charged pions
- Detected mainly via the decay channel $\pi^0 \rightarrow \gamma \gamma$ (branching ratio of 98.8%)
- Measured total cross section, $(3.57 \pm 0.44) \times 10^{-39} \text{ cm}^2/\text{nucleon}$, is 7.5% higher than the GENIE prediction, but within the range of uncertainties
- Reports differential cross sections in:
 - Neutral pion momentum, p_{π} , and scattering angle, $\cos\theta_{\pi}$
 - Muon momentum, p_{μ} , and scattering angle, $\cos \theta_{\mu}$
 - 4-momentum transfer, Q^2 and invariant hadronic mass, W

v_{μ} CC-inclusive π^{0} Results: Muon and Pion Kinematics

ν_{μ} CC-inclusive π^{0} Results: Muon and Pion Kinematics

More NOvA Near Detector Results Coming Soon

- Many more cross section results are in the pipeline, including:
 - $\overline{\nu}_{\mu}$ CC π^{0} measurement
 - $\overline{\nu}_e$ CC measurement

leen Marv

University of Londor

- Both v_{μ} and \overline{v}_{μ} CC 0-meson measurements
- v_{μ} charged pion measurements
- $\overline{\nu}_{\mu}$ interactions on hydrogen
- Measurement of the FHC ν -on-e flux

More NOvA Near Detector Results Coming Soon

- Many more cross section results are in the pipeline, including:
 - $\overline{\nu}_{\mu}$ CC π^{0} measurement
 - $\overline{\nu}_e$ CC measurement
 - Both v_{μ} and \overline{v}_{μ} CC 0-meson measurements
 - v_{μ} charged pion measurements
 - $\overline{\nu}_{\mu}$ interactions on hydrogen
 - Measurement of the FHC *v*-on-*e* flux

The newest Nova detector

A London-based lab(rador). Mostly detects food particles and sticks, but with 99.999% efficiency.

Thank you, on behalf of The NOvA Collaboration

v_{μ} CC Low Hadronic Activity: E_{avail} Genie 2.12.2

- Hadrons in the final state can influence purity, unfolding and efficiency, e.g.
 - if pions are misidentified as muons
 - If a hadronic shower hides the presence of a muon
 - If hadronic system is too close to detector edge and events fails
 containment cut
- This could introduce model dependences on the final-state hadronic system
- To try to reduce this, a 3D space including E_{avail} is used to apply purity, unfolding and efficiency corrections

$$\left(\frac{d^{2}\sigma}{d\cos\theta_{\mu}\,dT_{\mu}}\right)_{i} = \sum_{E_{avail}} \left(\frac{\sum_{j} U_{ij} \left(N^{sel} \left(\cos\theta_{\mu}, T_{\mu}, E_{avail}\right)_{j} P\left(\cos\theta_{\mu}, T_{\mu}, E_{avail}\right)_{j}\right)}{\epsilon \left(\cos\theta_{\mu}, T_{\mu}, E_{avail}\right)_{i} \left(\Delta\cos\theta_{\mu}\right)_{i} \left(\Delta T_{\mu}\right)_{i} N_{targets} \Phi}\right)$$

arXiv:2410.10222

v_{μ} CC-inclusive π^{0} Results: *W* and Q^{2}

- Pion production cross sections separated into
 - RES: first resonance (Δ_{1232})
 - RES: all higher resonances
 - DIS
- Total cross section once again underpredicts the data
- But, when area-normalised we can see that the shape has good agreement

ν_{μ} CC-inclusive π^{0} : Selection

- $CC\pi^0ID$ score is a log likelihood ratio representing the highest photon-like score among all tracks, apart from the muon track.
- Inputs are:
 - Bragg peak identifier to measure the increase in dE/dx towards the end of the track
 - Average calorimetric energy of all hits within the track
 - Distance from the reconstructed event vertex to the start of the track
 - Largest number of consecutive planes with no deposited energy

FIG. 7. An example fit to data in $CC\pi^0ID$ for events reconstructed with $0.8 < p_{\pi} < 1.0 \,\text{GeV}/c$. The left panel compares the unconstrained simulated $CC\pi^0ID$ distribution and data while the right shows the simulation after constraining signal and background normalizations.

