

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

First Measurement of Solar 8B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT arXiv 2408.02877

Dacheng Xu Columbia University Blois 2024, October 24th

Neutrino Fog

- Solar neutrino is the unavoidable background for DM
- First step into the "neutrino fog"

Coherent elastic neutrino-nucleus scattering (CEvNS)

D. Akimov et al, Science 357 (2017)

dacheng.xu@columbia.edu

10⁰

XENON Collaboration

- 200+ members
- 29 institutes
- 12 countries

Content - Physics result & technical improvement

- Introduction
 - The XENONnT experiment, detector characteristic
- Signal & Background
 - Calibration in low energy nuclear recoil
 - Background: Accidental Coincidence, ER, Neutron, Surface
- Inference and Result

dacheng.xu@columbia.edu

Please also see the talk by Jaron Grigat! (https://indico.cern.ch/event/1335188/contributions/6177615/)

XENON Detector Principle

IN THE CITY OF NEW YORK

- light(S1) and charge(S2) signals

XENONnT Under the Gran Sasso

dacheng.xu@columbia.edu

Drift Length	Diameter	Sensitive Target	Drift Field
1.5 m	1.32 m	5.9 tonne	23 V/cm

Eur. Phys. J. C 84, 784 (2024) 6

Signal & Background

• Discovery significance ~ S/\sqrt{B}

Sig. Bkg. ? ? ? ?

Calibration with Neutron Source: ⁸⁸YBe

- Excellent match between data and model
- Fit the NEST model with the ⁸⁸YBe data to predict the light and charge yield in the ⁸B CEvNS energy range at the XENONnT drift field

⁸B CEvNS Signal Region of Interest

S1 Range: 2 & 3 hits

• A hit usually corresponds to a photon hitting the PMT and is recorded by our DAQ and software

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

B CEVNS Signal Model

IN THE CITY OF NEW YORK

A

dacheng.xu@columbia.edu

Electronic and Nuclear Recoil Background

- SR1: 0.56 ± 0.56 Events

dacheng.xu@columbia.edu

Accidental Coincidence in XENONnT

Accidentally pair S1 and S2 peaks

Iso-S1 Rate	Iso-S2 Rate	T max
~ 15 Hz	~ 0.15 Hz	2.2 ms
		23 V

$$t) \cdot R_{S2}(t) \cdot T_{max}dt$$

In low energy NR ROI: (S1 2/3 hits, S2 from few to dozens electrons) Sig. Bkg. **Raw AC Rate** 5 mHz (~400/day)

> //cm drift field dacheng.xu@columbia.edu

Suppress isolated peaks & Simulation

Isolated S1: 15 Hz \rightarrow 2.3 Hz

IN THE CITY OF NEW YORK

G d

dacheng.xu@columbia.edu

S1/S2 Pulse shape into GBDT

Gradient Boosting Decision Tree

G d

- Trained with AC vs Simulated ⁸B
- Also use the S1BDT score and S2BDT score as inference dimensions

ns 14

Validation on Science data ACSideband

Determine Systematic Uncertainty

Dataset	Predicted	Observed	p-value (4D)	Relativ Uncertai
SR0	122.7	121	0.33	9.0%
SR1	302.5	326	0.25	5.8%

dacheng.xu@columbia.edu

Inference and Result

Sig. Bkg. 2 6 1 2

dacheng.xu@columbia.edu

Unblind Result

Component	Nominal Expectation	Background + ⁸ B fit
AC - SR0	7.5 ± 0.7	7.4
AC - SR1	17.8 ± 1.0	17.9
ER	0.7 ± 0.7	0.5
NR	0.5 ± 0.3	0.5
Total Backaround	26.4 ± 1.4	26.3
⁸ B	11.9 ± 4.5	10.7
Observed	37	

The significance of the solar ⁸B neutrinos via CEvNS in XENONnT at 2.73σ

dacheng.xu@columbia.edu

Set Constrain on solar ⁸B neutrinos flux

IN THE CITY OF NEW YORK

Summary and Outlook

IN THE CITY OF NEW YORK

G d

Supplementary

High Liquid XENON Purity

IN THE CITY OF NEW YORK

Q.

XENONnT maintains high electron lifetime thanks to its

XENONnT Science Data

Both SR0 and SR1 data are used to search for solar ⁸B CEvNS and WIMPs Dark Matter, etc

exposure [days]

Raw

COLUMBIA UNIVERSITY (del IN THE CITY OF NEW YORK

Calibration with Mono-E Electronic Recoils

IN THE CITY OF NEW YORK

G d

Surface Background

SR0 CEvNS-search Surface Background

dacheng.xu@columbia.edu

SR1 CEvNS-search Surface Background

Time Shadow - Quantify the cleanliness of the exposure

IN THE CITY OF NEW YORK

Find AC in ³⁷Ar datasets

Provide High AC Counts to validate the framework

K-shell EC (2.82 keV)

L-shell EC (0.27 keV)

Rarely detectable S1

Dataset	Predicted	Observed
PureAC	1522.7	1459
In-ROI	731.6	733
ACSideband	349.7	366

Analysis Validation by Search for ³⁷Ar L-Shel

COLUMBIA UNIVERSITY G d IN THE CITY OF NEW YORK

Extended binned likelihood with $3^4 = 81$ bins

4D GoF p-value: 0.7 dacheng.xu@columbia.edu

Final Prediction & Projected Discovery Potential

dacheng.xu@columbia.edu

We expect to see solar ⁸B neutrinos at $>2(3)\sigma$ significance with a probability of 0.80 (0.48), with a full 4-D analysis

First Search for Light Dark Matter in the Neutrino Fog with XENONnT

A IN THE CITY OF NEW YORK

dacheng.xu@columbia.edu

arXiv 2409.17868 Submitted to PRL

