

Probing Neutrino Mass: Latest Results from the KATRIN Experiment

Khushbakht Habib (KIT) on behalf of the KATRIN Collaboration 35th Rencontres de Blois on Particle Physics and Cosmology Oct 20-25, 2024

Neutrinos and their oscillations

- **Neutrino** \rightarrow fundamental, electrically neutral particle
- **●** Originally predicted to be massless
- Neutrino oscillations verify non-zero neutrino mass
	- mass eigenstates differ from flavour eigenstates
- **Oscillations** provide information on mass squared differences
	- $\Delta m_{ij}^2 = m_i^2 m_j^2$
- Still unknown: exact mechanism of mass generation, mass hierarchy, and **absolute mass scale**

Neutrino Mass observables

Lokhov, Mertens, Parno, Schlösser, Valerius, Ann.Rev.Nucl.Part.Sci. 72 (2022) 259-282

Tritium β-Decay: A key to measure m

- Decay scheme: $T_2 \rightarrow {}^{3}HeT^{+} + e^{-} + \bar{\nu}_e + Q(T_2)$
- Effective neutrino mass determined through **kinematic parameters and energy conservation** principles

Why Tritium:

- Half-life: 12.3 yr
- Low endpoint energy: 18.57 keV
- Non-zero neutrino mass changes the shape of the spectrum near E_0
- Enables precise measurements of spectrum tail

KATRIN: Karlsruhe **Tri**tium **N**eutrino Experiment

KATRIN Experimental setup

- **Tritium source:** high-activity (~100 GBq) windowless gaseous molecular source
- **Spectrometer:** high-resolution (~1 eV)
- **Segmented detector:** measures electron counts with a 148-pixel silicon PIN diode at the focal plane
- ➔ Conducts **integral spectrum** scans, discrete retarding potential steps

Modeling the tritium Spectrum

Observed spectrum

❏ Maximum likelihood fit of analytical model

 $R_{\beta}(E; m_v^2, E_0) \cdot f(qU, E)dE + R_{\text{bg}}$ $R(qU) = A \cdot \int$

KATRIN data

Fit result

18600

with 1σ errorbars \times 10

18620

$$
\Box \qquad \text{with free parameters } m^2, E_0, A \text{ and } R_{bg}
$$

□ Analysis window: $[\mathbf{E}_0$ -40 **eV**, \mathbf{E}_0 +135 **eV**]

 \mathbf{T}_2 Beta spectrum \mathbf{R}_{β} (E;m²(ν_e),E_o)

) Response function: f(E-qU)

Determined by magnetic fields and scattering probabilities

Data Analysis

- **Two independent analysis teams** with different analysis frameworks
	- Highly optimized model evaluation
	- Neural network-assisted fast model predictions EPJC 82, 439 (2022)

● A two-step blinding strategy:

- Fixing analysis procedure using MC-generated data
- Using blinded model with unknown modifications of final states

Approach Challenges

Handling of multiple campaigns maintaining high

precision (over 1500 data points)

- Around **180** fitting parameters to manage
- ~ 150 correlated systematic parameters
- Computationally expensive model-calculations

and fitting procedures

KATRIN data taking overview

Experimental Data: Campaigns 1-5

- 7 different configurations
- 59 stacked spectra
- 1609 data points
- **●** ~ 36 Mio counts in total
- parameter correlations across datasets
- fourth campaign split post unblinding, impact \sim 0.1 eV²

Experimental Improvements in new data

- **Shifted analyzing plane** configuration
	- Achieved two-fold **reduction in background**

[A.Lokhov et al., Eur. Phys. J. C 82, 258 (2022)]

● **83mKr co-circulation** mode

○ Used to determine both **source potential** and **spectrometer fields**

[A. Marsteller et al 2022 JINST 17 P12010]

- **●** Improved electron gun
	- **○** Mono-energetic angular-selective photoelectron source
	- **○** Better calibration of the **scattering effects**

Systematic Uncertainty Breakdown: For measurement campaigns 1-5

● **6-fold increase in statistics**, 2-fold reduction of background

- **Improved** control over source-related effects
- ➔ **Statistical uncertainty dominates**, improved calibration precision in recent campaigns

Further improvement for campaigns beyond KNM5

Fit results

- **•** Simultaneous maximum likelihood fit performed, using a common m_ν^2 *2* parameter
- **p-value** of 0.84
- **•** Best fit value of m_{ν}^2 *2* :

$$
\boxed{m_{\nu}^2 = -0.14^{+0.13}_{-0.15} \, \mathrm{eV}^2}
$$

Khushbakht Habib for the KATRIN collaboration - Blois 2024 14

Neutrino-mass limit: For campaigns 1-5

● New world-leading direct upper limit on the neutrino mass:

 m_{ν} < **0.45 eV** (90% *CL*)

based on **Lokhov-Tkachov** confidence interval construction (ensures upper limit is not reduced by negative m_{ν}^2 values)

[Lokhov, Tkachov, Phys.Part.Nucl. 46 (2015)]

● Feldman-Cousins limit:

 m_{ν} < 0.31 eV (90% *CL*), benefits from negative best-fit

● Latest results after 259 days of data taking: available at <https://arxiv.org/abs/2406.13516>

Beyond Neutrino mass physics with KATRIN

Search for a sterile neutrino

KATRIN sterile neutrino analysis

Phys.Rev.Lett. 126 (2021) 9, 091803 Phys.Rev.D 105 (2022) 7, 072004

Kink search: Close to the end-point of β -spectrum

Relic Neutrinos

KATRIN Relic neutrino analysis *Phys. Rev. Lett. 129 (2022) 1, 011806*

Peak search: Probe for local overdensity of relic neutrinos

New light bosons

Theoretical basics & study JHEP 01 (2019) 206

Shape distortion: Additional BSM bosons coupling to leptons →real emission in β-decay

General Neutrino interactions (GNIs)

GNIs search with KATRIN Experiment arXiv:2410.13895

Shape distortion: Search for spectrum distortions due to exotic electro-weak interactions

Lorentz invariance violation

KATRIN first data search for Lorentz-violation *Phys.Rev.D 107 (2023) 8, 082005*

Temporal variation: Search for Lorentz-violation by spectrum's sidereal modulation

Analysis Outlook: Extended Range Study

- \bullet We record data in a wider energy window below the endpoint E_0 (60 eV and 90 eV ranges)
- Use only 40 eV range for the analysis
- \bullet Idea: to go for higher ranges below E_{0} to increase statistical power, but have to ensure good control over (energy-dependent) systematics

Conclusion and Outlook

New **world-best** direct neutrino mass upper limit

 m_{ν} < **0.45 eV** (90% *CL*)

- **KATRIN data taking continues** until end-2025
	- Aiming for 1,000 measurement days
	- Target sensitivity: below 0.3 eV
- **BSM physics searches:** sterile neutrinos, relic neutrinos and more ..
- **TRISTAN** detector upgrade in 2026
	- Focused on detecting keV-scale sterile neutrinos [Mertens et al., J.Phys.G 46 (2019)]
- **KATRIN++** (beyond 2027)
	- development of **differential** detection and **atomic** tritium technologies

KATRIN Collaboration

Thanks for your attention

Collaboration meeting in October 2024, Karlsruhe

Back up

Systematic effects

adiabatic collimation

 $B_{src} = 2.5T$

Cyclotron Field line direction

motion

20

Experimental Improvements in new data

- **Shifted analyzing plane** configuration
	- Achieved two-fold **reduction in background**
	- Inhomogeneous spectrometer fields
		- Increased segmentation of data **by factor of 14**

The MAC-E filter principle

Tritium source

- 10m long Windowless Gaseous Tritium Source (WGTS)
- Stable amount of tritium ($\sigma \sim 0.1\%/h$)
- Gas composition with high tritium purity (>95%)
- Activity \sim 100 GBq
- Stable cryostat temperature (mK scale)

Model Blinding:

- Unknown broadening of molecular final state distribution
- \bullet unknown shift of m^2

The theoretical β-decay spectrum is calculated with Fermi's golden rule

$$
\left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E}\right)_{\mathrm{C}} = \frac{G_{\mathrm{F}}^{2} |V_{\mathrm{ud}}|^{2}}{2\pi^{3}} (g_{\mathrm{V}}^{2} + 3g_{\mathrm{A}}^{2}) F_{\mathrm{rel}}(Z, E)
$$

\n
$$
\cdot p(E + m_{\mathrm{e}}) \cdot SL\,C\,I
$$

\n
$$
\cdot \sum_{f} G\,R\,Q \cdot P_{f}\,\epsilon_{f}\,\sqrt{\epsilon_{f}^{2} - m_{\mathrm{V}}^{2}}\,\Theta(\epsilon_{f} - m_{\mathrm{V}})
$$

\n
$$
-2\log\mathcal{L}_{\mathrm{combined}} = \sum_{f} \frac{\left(R_{\mathrm{calc}}\,(qU_{i}) - R_{\mathrm{data}}\,(qU_{i})\right)^{2}}{2}
$$

$$
-2\log\mathcal{L}_{\text{combined}} = \sum_{\text{KNM1},2,3-\text{NAP}} \sum_{i} \frac{\left(R_{\text{calc}}\left(qU_{i}\right)-R_{\text{data}}\left(qU_{i}\right)\right)^{2}}{\sigma_{R,i}^{2}} + \sum_{\text{KNM3-SAP},4,5} \sum_{i,k} 2\left(R_{\text{calc},k}(qU_{i})\cdot t_{i}-N_{i,k}+N_{i,k}\cdot\ln\frac{N_{i,k}}{R_{\text{calc},k}(qU_{i})\cdot t_{i}}\right)
$$

TRISTAN @ KATRIN

- Search for keV sterile neutrinos
	- Novel SDD array for high rates \circ
- Target sensitivity to mixing of 10⁻⁶
	- Ongoing systematic and modeling studies \circ
- **Timeline**
	- 2024 Assembling a full detector replica \circ
	- 2026 Installation in the KATRIN beamline \circ
	- 2026-2027 keV sterile neutrino search \circ

TRISTAN detector in KATRIN setup

Backgrounds

KNM4 Data Combination

- Split KNM4 into KNM4-NOM and KNM4-OPT
- nominal and optimized time distribution
- Sourcepotentialdriftof60mV during KNM4 wasnottaken into account
- Modification causes shift of m^2 by 0.1 eV²
- Additional analysis steps before unblinding in the future

