

Probing Neutrino Mass: Latest Results from the KATRIN Experiment

Khushbakht Habib (KIT) on behalf of the KATRIN Collaboration 35th Rencontres de Blois on Particle Physics and Cosmology Oct 20-25, 2024

Neutrinos and their oscillations

- Neutrino \rightarrow fundamental, electrically neutral particle
- Originally predicted to be massless
- Neutrino oscillations verify non-zero neutrino mass
 - mass eigenstates differ from flavour eigenstates
- Oscillations provide information on mass squared differences
 - $\circ \qquad \Delta m_{ij}^2 = m_i^2 m_j^2$
- Still unknown: exact mechanism of mass generation, mass hierarchy, and **absolute mass scale**

Neutrino Mass observables

Lokhov, Mertens, Parno, Schlösser, Valerius, Ann.Rev.Nucl.Part.Sci. 72 (2022) 259-282

Tritium β -Decay: A key to measure m_y

- Decay scheme: $T_2 \rightarrow {}^{3}\text{HeT}^+ + e^- + \bar{\nu}_e + Q(T_2)$
- Effective neutrino mass determined through kinematic parameters and energy conservation principles

Why Tritium:

- Half-life: 12.3 yr
- Low endpoint energy: 18.57 keV
- Non-zero neutrino mass changes the shape of the spectrum near E₀
- Enables precise measurements of spectrum tail

KATRIN: Karlsruhe Tritium Neutrino Experiment

KATRIN Experimental setup

- Tritium source: high-activity (~100 GBq) windowless gaseous molecular source
- **Spectrometer:** high-resolution (~1 eV)
- Segmented detector: measures electron counts with a 148-pixel silicon PIN diode at the focal plane
- → Conducts **integral spectrum** scans, discrete retarding potential steps

Full setup description: KATRIN, JINST 16 (2021) T08015

Modeling the tritium Spectrum

T₂ Beta spectrum R_{β} (E; $m^2(\nu_{\rho})$, E_{ρ})

Observed spectrum

□ Maximum likelihood fit of analytical model

 $R(qU) = \mathbf{A} \cdot \int_{qU}^{E_0} R_{\beta}(E; \frac{m_{\gamma}^2}{2}, E_0) \cdot f(qU, E) dE + \mathbf{R}_{bg}$

with free parameters
$$m_{\nu}^2$$
, E_0 , A and R_{be}

□ Analysis window: [E₀- 40 eV, E₀ + 135 eV]

Response function: *f*(*E*-*qU*)

Determined by magnetic fields and scattering probabilities

Data Analysis

Approach

- **Two independent analysis teams** with different analysis frameworks
 - Highly optimized model evaluation
 - Neural network-assisted fast model predictions
 EPJC 82, 439 (2022)
- A two-step blinding strategy:
 - Fixing analysis procedure using MC-generated data
 - Using blinded model with unknown modifications of final states

Challenges

• Handling of multiple campaigns maintaining high

precision (over 1500 data points)

- Around **180** fitting parameters to manage
- ~ **150** correlated systematic parameters
- Computationally expensive model-calculations

and fitting procedures

KATRIN data taking overview

Experimental Data: Campaigns 1-5

- 7 different configurations
- 59 stacked spectra
- 1609 data points
- ~ 36 Mio counts in total

- parameter correlations across datasets
- fourth campaign split post unblinding, impact ~0.1 eV²

Experimental Improvements in new data

- Shifted analyzing plane configuration
 - Achieved two-fold **reduction in background**

[A.Lokhov et al., Eur. Phys. J. C 82, 258 (2022)]

- ^{83m}Kr co-circulation mode
- mode
 - Used to determine both **source potential** and **spectrometer fields**

[A. Marsteller et al 2022 JINST 17 P12010]

- Improved electron gun
 - Mono-energetic angular-selective photoelectron source
 - Better calibration of the **scattering effects**

Systematic Uncertainty Breakdown: For measurement campaigns 1-5

• **6-fold increase in statistics**, 2-fold reduction of background

- Improved control over source-related effects
- → Statistical uncertainty dominates, improved calibration precision in recent campaigns

Further improvement for campaigns beyond KNM5

Fit results

- Simultaneous maximum likelihood fit performed, using a common m_{ν}^{2} parameter
- **p-value** of 0.84
- Best fit value of m_{γ}^{2} :

$$m_
u^2 = -0.14^{+0.13}_{-0.15}\,{
m eV}^2$$

Khushbakht Habib for the KATRIN collaboration - Blois 2024

Neutrino-mass limit: For campaigns 1-5

• New world-leading direct upper limit on the neutrino mass:

m_ν < 0.45 eV (90% CL)

based on **Lokhov-Tkachov** confidence interval construction (ensures upper limit is not reduced by negative m_{ν}^2 values) [Lokhov, Tkachov, Phys.Part.Nucl. 46 (2015)]

- Feldman-Cousins limit:
 - m_{ν} < 0.31 eV (90% *CL*), benefits from negative best-fit
- Latest results after 259 days of data taking: available at https://arxiv.org/abs/2406.13516

Beyond Neutrino mass physics with KATRIN

Search for a sterile neutrino

KATRIN sterile neutrino analysis Phys.Rev.Lett. 126 (2021) 9, 091803 Phys.Rev.D 105 (2022) 7, 072004

Kink search: Close to the end-point of β -spectrum

Relic Neutrinos

KATRIN Relic neutrino analysis Phys. Rev. Lett. 129 (2022) 1, 011806

Peak search: Probe for local overdensity of relic neutrinos

New light bosons

Theoretical basics & study JHEP 01 (2019) 206

Shape distortion: Additional BSM bosons coupling to leptons \rightarrow real emission in β -decay

General Neutrino interactions (GNIs)

GNIs search with KATRIN Experiment arXiv:2410.13895

Shape distortion: Search for spectrum distortions due to exotic electro-weak interactions

Lorentz invariance violation

KATRIN first data search for Lorentz-violation Phys.Rev.D 107 (2023) 8, 082005

Temporal variation: Search for Lorentz-violation by spectrum's sidereal modulation

Analysis Outlook: Extended Range Study

- We record data in a wider energy window below the endpoint E_0 (60 eV and 90 eV ranges)
- Use only 40 eV range for the analysis
- Idea: to go for higher ranges below E₀ to increase statistical power, but have to ensure good control over (energy-dependent) systematics

ATR LANGE

Conclusion and Outlook

• New **world-best** direct neutrino mass upper limit

m_v < 0.45 eV (90% *CL*)

- KATRIN data taking continues until end-2025
 - Aiming for 1,000 measurement days
 - Target sensitivity: below 0.3 eV
- **BSM physics searches**: sterile neutrinos, relic neutrinos and more ...
- **TRISTAN** detector upgrade in 2026
 - Focused on detecting keV-scale sterile neutrinos [Mertens et al., J.Phys.G 46 (2019)]
- **KATRIN++** (beyond 2027)
 - development of **differential** detection and **atomic** tritium technologies

KATRIN Collaboration

Thanks for your attention

Collaboration meeting in October 2024, Karlsruhe

Back up

Systematic effects

adiabatic collimation

Cyclotron

motion

 $B_{\rm src} = 2.5 \, {\rm T}$

Experimental Improvements in new data

- Shifted analyzing plane configuration
 - Achieved two-fold **reduction in background**
 - Inhomogeneous spectrometer fields
 - Increased segmentation of data by factor of 14

The MAC-E filter principle

Tritium source

- 10m long Windowless Gaseous Tritium Source (WGTS)
- Stable amount of tritium (σ ~ 0.1%/h)
- Gas composition with high tritium purity (>95%)
- Activity ~100 GBq
- Stable cryostat temperature (mK scale)

Model Blinding:

- Unknown broadening of molecular final state distribution
- unknown shift of m^2

The theoretical β -decay spectrum is calculated with Fermi's golden rule

$$\left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E}\right)_{\mathrm{C}} = \frac{G_{\mathrm{F}}^2 |V_{\mathrm{ud}}|^2}{2\pi^3} \left(g_{\mathrm{V}}^2 + 3g_{\mathrm{A}}^2\right) F_{\mathrm{rel}}(Z, E) \cdot p\left(E + m_{\mathrm{e}}\right) \cdot S L C I \cdot \sum_{f} G R Q \cdot P_f \epsilon_f \sqrt{\epsilon_f^2 - m_{\mathrm{v}}^2} \Theta(\epsilon_f - m_{\mathrm{v}})$$

$$-2\log \mathcal{L}_{\text{combined}} = \sum_{\text{KNM1,2,3-NAP}} \sum_{i} \frac{\left(R_{\text{calc}}\left(qU_{i}\right) - R_{\text{data}}\left(qU_{i}\right)\right)^{2}}{\sigma_{R,i}^{2}} + \sum_{\text{KNM3-SAP,4,5}} \sum_{i,k} 2\left(R_{\text{calc},k}(qU_{i}) \cdot t_{i} - N_{i,k} + N_{i,k} \cdot \ln \frac{N_{i,k}}{R_{\text{calc},k}(qU_{i}) \cdot t_{i}}\right)$$

TRISTAN @ KATRIN

- Search for keV sterile neutrinos
 - Novel SDD array for high rates
- Target sensitivity to mixing of 10⁻⁶
 - Ongoing systematic and modeling studies
- Timeline
 - 2024 Assembling a full detector replica
 - 2026 Installation in the KATRIN beamline
 - 2026-2027 keV sterile neutrino search

TRISTAN detector in KATRIN setup

Backgrounds

KNM4 Data Combination

- Split KNM4 into KNM4-NOM and KNM4-OPT
- nominal and optimized time distribution
- Sourcepotentialdriftof60mV during KNM4 wasnottaken into account
- Modification causes shift of m^2 by 0.1 eV²
- Additional analysis steps before unblinding in the future

