First results on 0vββ decay with the LEGEND experiment

Sofia Calgaro – on behalf of the LEGEND Collaboration

sofia.calgaro@pd.infn.it 35th Rencontres de Blois

Searching for $0\nu 2\beta$

Signature

- $2\nu 2\beta$ (SM): continuous, broad spectrum \rightarrow observed (10¹⁸⁻²¹ yr)
- $0\nu 2\beta$ (BSM): peak at $Q_{\beta\beta}$ (electrons energy) \rightarrow not observed (>10²¹⁻²⁶ yr)

• Neutrino mass scale & ordering

Searching for $0\nu 2\beta$

 $\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} (Q_{\beta\beta}, Z) |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$ Nuclear Matrix $m_{\beta\beta} = \left| \sum_{i} U_{ei}^2 m_i \right| \rightarrow \text{to compare results}$ Half-life obtained with different isotopes: ⁷⁶Ge, ¹³⁶Xe, ¹³⁰Te, ¹⁰⁰Mo, ⁸²Se Effective Majorana neutrino mass Element (NME) ϵ : efficiency $T_{1/2}^{0\nu} \propto \begin{cases} \epsilon \cdot f \cdot \sqrt{\frac{\epsilon}{BI \cdot \Delta E}} & \text{with bkg} \\ \epsilon \cdot f \cdot \epsilon & \text{without bkg} \end{cases}$ Sensitivity f: isotopic fraction $\varepsilon = mass \cdot time$: exposure ΔE : energetic resolution at $Q_{\beta\beta}$ *BI*: background index

The LEGEND Project

LEGEND

Large Enriched Germanium Experiment for Neutrinoless ββ Decay

GERDA and MAJORANA DEMONSTRATOR

set most stringent constraints for $0\nu\beta\beta$ Ge-76

new

groups

https://legend-exp.org/

GERDA

The LEGEND Project

"The collaboration aims to develop a phased, ⁷⁶Ge-based 0vββ decay experimental program with **discovery potential at a half-life beyond 10²⁸ yr,** using existing resources as appropriate to expedite physics results"

Sofia Calgaro

LEGEND-1000

"By combining the lowest background levels and the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an

unambiguous discovery with just a handful of counts at the Q_{BB} "

Sofia Calgaro

Design &

reviews

Why Germanium?

- No theoretical preferences
- Experimental preferences
 - costs
 - energy resolution
 - background level
 - scalability (liquids, gas, crystals)
- ${}^{76}_{32}\text{Ge} \rightarrow {}^{76}_{34}\text{Se} + 2e^- (+2\overline{\nu}_e)$ with $Q_{\beta\beta}=2039.06$ (7) keV
- $Q_{\beta\beta}>2$ MeV: less processes can mimic the $0\nu 2\beta$ signal
- Natural abundance is low (~8%): enrichment up to ~92% is possible

 $\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} (Q_{\beta\beta}, Z) |M^{0\nu}|^2 \left(\frac{m_{\beta\beta}}{m_e}\right)^2$

LEGEND-200 HPGe diodes

- p+ (implanted B), n+ (diffused Li), passivated groove
- Fully depleted crystals
- Different geometries mass: 0.7-4 kg
- 130 kg operational (12 kg OFF for hardware issues)

- @ Hall A of Laboratori Nazionali del Gran Sasso (LNGS), Italy
- Same infrastructure of GERDA
- Rock overburden of 3500 m.w.e.
- Muon flux reduced to 1.25 / (m²h) reduction factor: $\mathcal{O}(10^6)$

Experimental Setup

•

Array

Liquid argon (LAr) system 58 read-out modules of SiPMs coupled to WLS fibers Outer Barrel (20+20) Inner Barrel (9+9)

Ultrapure water tank

- Shields n, γ
- 66 PMTs (Cherenkov) + plastic scintillators for μ
- Ø 10m, H 8.5 m, V 590 m³
 - Clean room at 9.7 m

Array of HPGe diodes

Background Reduction

Sofia Calgaro

LEGEND-200 Data Sets

Energy Scale and Resolution

- Weekly energy calibrations between physics runs using Th-228 sources
- Overall resolution of 0.1% FWHM at $Q_{\beta\beta}$ (including large IC detectors)
- Very stable energy scale energy bias 0.3 ± 0.2 keV at $Q_{\beta\beta}$
- Data partitioned according to stability of energy observables

Energy Spectrum - golden

- Blinded analysis in $Q_{\beta\beta} \pm 25$ keV
- Spectrum after:
 - data cleaning \rightarrow 95-99% survival after removal of unphysical events
 - muon veto \rightarrow 2 events removed at $Q_{\beta\beta}$
 - multiplicity cut \rightarrow 26% events removed at $Q_{\beta\beta}$

Energy Spectrum - golden

Background Model - silver

- Decomposition of the full-range energy spectrum
- Bayesian background model using silver data set + 10.2 kg·yr of special runs
- Silver data .vs. simulations and material radioassay: Th-228 underprediction in physics data
 - this background is efficiently suppressed by analysis cuts
 - tested different Th-228 locations via the background model: no hotspots or asymmetries

Pulse Shape Discrimination Cut - golden

- 60% suppression of Compton MSE at $Q_{\beta\beta}$
- Cut acting on A/E = max(current) / energy
 - Late charge cut for PPC (large passivated surface)
 - Neural-network methods under development for Coaxial
- Data partitioned according to stability of PSD observables

Liquid Argon (LAr) Cut - golden

- Strong anti-correlation of PSD & LAr cuts
- Characterized via special runs: 1 p.e. per 10 keV
- ββ decay signal acceptance of ~93%

Results Before Unblinding - golden

Results After Unblinding - golden

- 7 events after unblinding (1 event at 1.4 σ from $Q_{\beta\beta}$)
- BI = $5.3 \pm 2.2 \times 10^{-4} \text{ cts/(keV·kg·yr)}$
 - world-leading result
 - goal: $2 \times 10^{-4} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$
- Unbinned fit of GERDA^(*) + MJD^(**) + LEGEND-200
 - p-value of background-only = 26%
 - Observed T_{1/2} > 1.9 × 10²⁶ yr @ 90% CL
 - Sensitivity T_{1/2} = 2.8 × 10²⁶ yr @ 90% CL +30% thanks to LEGEND-200

Summary

- LEGEND-200
 - fully operative at LNGS
 - first unblinded results over 1 yr of data taking
 - +30% in $0\nu 2\beta$ median sensitivity
 - allows for a prompt investigation of issues
 - powerful LEGEND-1000 test-bench
 - ongoing analysis for testing background hypotheses with different setups
 - ongoing radioassay campaign
 - maintenance work (gain in background rejection)
 - install new 35 kg of enr-Ge + restart data taking at the end of 2024
- LEGEND-1000
 - preparations underway at LNGS following Borexino decommissioning
 - funding sought from U.S. (DOE and NSF) and EU
 - funding already in hand from several EU institutions
 - data taking will start in the next decade

Thank you for your attention!

