Top quark property measurements with the CMS experiment

O. Hindrichs On behalf of the CMS collaboration

University of Rochester

BLOIS 2024

Oct 24, 2024

Otto Hindrichs (UR)

top quark properties CMS

Oct 24, 2024

1/22

Introduction

Cross sections of 830 pb (920 pb) at 13 TeV (13.6 TeV) \rightarrow about 100M t $\bar{\rm t}$ pairs in Run 2

- Status and conclusions from (multi) differential cross sections measurements
- News from measurements of spin correlations and observation of entanglement
- New techniques for m_t measurements

Differential $t\bar{t}$ cross sections measurements

e/µ+jets 137 fb⁻¹: *Phys. Rev. D* 104, 092013:

- analysis performed using resolved (3 jets) and boosted (1 fat jet) reconstruction
- cross section extracted fitting all reconstruction categories simultaneously.

dilepton 138 fb⁻¹: *Submitted to JHEP*

- selection: ee, eμ, μμ at least 2 jets, at least 1 b jet.
- find analytic solutions for neutrino momenta; use solution with lowest m(tt). Repeat procedure 100 times varying objects within their resolutions.

BHRL: boosted $t_{\rm h}$, resolved $t_{\rm l};$ BHBL: boosted $t_{\rm h}$ and $t_{\rm l}$

- *p*_T better described by NNLO calculation.
- trend of harder spectrum in NLO calculations disappears above 600 GeV

Uncertainties

- 138 b⁻¹ (13 TeV)
 Bade
 Constraint
 Constraint
 - systematic dominated by experimental uncertainties like jet energy calibration and b-tagging.

Bin [p (t)]

- measurements show excess of data at the $m(t\bar{t})$ production threshold.
- uncertainties in measurements are large in the first bins. Experimental and modelling uncertainties contribute.
- uncertainties in POWHEG+PYTHIA8 are sizable in this bin (This is the only model shown with the full set of variations)

Comparison of measurements to various predictions using χ^2 -tests uncertainties in measurements and predictions are take into account.

Most of the predictions are in good agreement with the measurement—with a few exceptions:

- m(tt̄) vs. p_T(t_h) and p_T(tt̄) vs. p_T(t_h) shows largest disagreements.
 but theory uncertainties might be underestimated using fully correlated scale variations
- at particle level additional jets vs. kinematic observable are not well described. depends strongly on PS tuning

Cross section measurements are used: m_t and α_s extraction, PDF fits, EFT interpretation ...

Extraction of tt polarization and spin correlation in e/μ +jets events

138 fb⁻¹, 13 TeV, *submitted Phys. Rev. D*

• in the helicity-frame the differential cross section of particles from $t\bar{t}$ decays can be parameterized by the polarization vector P and the spin correlation matrix C:

$$rac{d^4\sigma}{d\Omega dar{\Omega}} \propto 1+\kappa {f P}\cdot {f \Omega}+ar{\kappa}ar{f P}\cdotar{f Q}+\kappaar{\kappa}\Omega\cdot Car{f \Omega}$$

- together with an overall normalization factor there are 16 parameters to determine
- spin analyzing powers κ depend on the decay particle of the top quark used in the analysis. Best sensitivity (κ = 1) for charged lepton and down-type quarks from W decays.
- e/µ+jets final-state: easy reconstruction of top quark momenta, high branching fraction, but challenging to identify the down-type quarks.
- use ML for identification of top decay products based on kinematic and flavor-tagging information (half of the time there is a c-jet in the W decay)

Extraction method

According to the cross section formula each coefficient is proportional to a function depending on the angles of the two decay products (2 bins in $\cos(\theta_{p/\bar{p}})$ and 4 bins in $\phi_{p/\bar{p}}$):

The blue lines show how the detector affects the theoretical shapes (red) due to acceptance, resolution, efficiencies ...

 $\rightarrow Fit$ linear combination of the detector-level templates to data.

Otto Hindrichs (UR)

top quark properties CMS

Using the SM $\mathrm{t}\overline{\mathrm{t}}$ simulation to construct the templates can result into a bias in the measured coefficients.

 \rightarrow avoided by fitting in bins of $t\bar{t}$ distributions: $m(t\bar{t})$ vs cos(θ_t) or $p_T(t)$ vs cos(θ_t):

Inclusive results

From the combination of bins, the inclusive polarization and spin correlation are obtained:

These are in good agreement with the SM expectations; reduction of of uncertainties by about a factor of two with respect to previous measurement (dilepton, with 36 fb^{-1} , *Phys. Rev. D* 100 (2019) 072002)

Differential Results

- the diagonal elements are changing for different $m(t\bar{t})$ and $cos(\theta_t)$ regions
- statistical uncertainties dominant in most bins \rightarrow room for improvement with more data

11/22

Quantum Entanglement

• at the threshold and at high $m(t\bar{t})$ with low $|\cos(\theta_t)| t\bar{t}$ is expected to be produced in entangled quantum states

A criterion for entanglement (based on Peres-Horodecki): $\Delta E = C_{nn} + |C_{rr} + C_{kk}| > 1$

First observation of the signature of an entangled quantum state at high $m(t\bar{t})$.

Entanglement near the threshold in the dilepton final-state

36 fb⁻¹, 13 TeV, accepted by ROPP

At the $t\bar{t}$ production threshold, where all diagonal elements of C are positive $D = -\frac{1}{3}\Delta E$

$$rac{d\sigma}{d\cos(\phi)} \propto 1 - D\cos(\phi)$$

This allows for the extraction of the entanglement sensitive observable using the single differential distribution of the opening angle between the two leptons in the helicity-frame.

Results

• observation of signature of entanglement with high significance D < 1/3

• uncertainties in the measurement do not allow for a separation between SM hypotheses with and without toponium. (Simulated as pseudo scalar particle with mass of 343 GeV and a production cross section of 6.4 pb.)

Search for scalar- and pseudo-scalar Higgs decaying into $t\bar{t}$

 $138 \, \text{fb}^{-1}$, 13 TeV, *HIG-22-013*

A search for heavy scalar. and pseudo-scalar Higgs is performed in the $e/\mu+{\rm jets}$ and dilepton final-states

• e/μ +jets channel uses the scattering angle $\cos(\theta_t)$ to separate based on the spin

Otto Hindrichs (UR)

 dilepton channel uses c_{hel}(same as cos(\u03c6), angle between two charged leptons) and c_{han} as search variables. Can separate scalar and pseudo scalar states

- $\bullet\,$ both channels observe significant excess at the $t\bar{t}$ production threshold
- data prefer a pseudo scalar contribution for the excess (using the same production cross section for both, tested here with 365 GeV).
- fitted cross section for simple toponium model: 7.1 pb with 11% uncertainty.

Direct measurement of $m_{\rm t}$ (MC parameter) in e/μ +jets events

36 fb⁻¹, 13 TeV, Eur. Phys. J. C 83 (2023) 963

- select events with e/μ and >= 4jets
- perform kinematic fitting with constraints of two equal top quark masses and W mass
- goodness of fit also used to determine best parton-jet assignment (47% correct)
- up to 4 distributions + one control region used to extract $m_{\rm t}$

18 / 22

- ullet best fitted value $m_{
 m t}=171.77\pm0.37\,{
 m GeV}$
- leading uncertainty is final-state PS scales 0.21 GeV in contrast to previous measurements uncorrelated scales for different branchings (g → qq̄, q → gq ...) used
- modelling very important for this measurement

 $m_{\rm t}$ measurement from boosted hadronically decaying top quarks in e/μ +jets events

138 fb⁻¹, 13 TeV, Eur. Phys. J. C 83 (2023) 560

Measure $m_{\rm t}$ from unfolded particle-level jet mass

- use XCone jet algorithm (r = 1.2) to find 2 jets: the boosted hadronically decay products; the lepton and b-jet from the leptonically decay
- use XCone (r = 0.4) to identify the three subjets (combined $p_{\rm T} > 400~GeV$, each subjet $p_{\rm T} > 30~GeV$)

- after excluding the b-subjet the W mass of the remaining two jets is used for the calibration of the jet energy
- from the unfolded jet mass:

$$m_{
m t} = 173.06 \pm 0.84\,{
m GeV}$$

with jet energy and mass calibration being the largest uncertainties.

This method using boosted top quarks provides complementary measurement compared to measurements using low $p_{\rm T}$ top quark closer to the threshold, in particular with respect to theoretical uncertainties.

Conclusion

Measurement of (multi) differential cross sections:

- performed in many channels; resolved and boosted reconstructions
- used to determine: $m_{\rm t}$, PDFs, EFT limits, MC tunes

Spin correlations:

- $\bullet\,$ first measurement of spin correlations in various regions of the $t\bar{t}$ phase space
- first characterization of $t\bar{t}$ quantum state as entangled

Significant pseudo-scalar-like excess at the $\mathrm{t}\overline{\mathrm{t}}$ production threshold Top quark mass:

- new precise and complementary measurements with boosted top quarks
- improved techniques leveraging in-situ constraints for higher precision