Highlights on top quark physics with the ATLAS experiment at the LHC

Dominic Hirschbühl

BERGISCHE UNIVERSITÄT WUPPERTAL

FSP ATLAS Erforschung von Universum und Materie

 35^{th} Recontres de Blois 24.10.2024

Introduction

By far the heaviest know elementary particle

- ~40x bottom quark mass
- Same mass scale as W, Z and Higgs Bosons \rightarrow connection to EW Symmetry Breaking ?

Top Yukawa coupling is ~1 \rightarrow coincidence?

It decays before it hadronises

- Can be studied as bare quark
- Very high production rate at the LHC
- 0.2 0.8 nb production cross section
 @ LHC energies
- Produced more than 100M $t\overline{t}$ pairs in Run 2 and Run 3 each

Introduction

By far the heaviest know elementary particle

- ~40x bottom quark mass
- Same mass scale as W, Z and Higgs Bosons \rightarrow connection to EW Symmetry Breaking ?

Top Yukawa coupling is $\sim 1 \rightarrow$ coincidence?

It decays before it hadronises

• Can be studied as bare quark

Very high production rate at the LHC

- 0.2 0.8 nb production cross section @ LHC energies
- Produced more than 100M $t\bar{t}$ pairs in Run 2 and Run 3(about 15 pairs/s)

 \rightarrow Measurements of tt production in association of additional particles, rare decays and rare production mechanism are now in reach (with high stats)

Status: June 2024

3

Differential cross-sections in $t\bar{t}$ + jets

- Already many distribution measured in the last years
- Here focus on dynamics and topology of the hardest and second-hardest QCD emissions using
 p_T and *y* of jets and their angular correlations and invariant masses
- Very good tests of pQCD theory via NLO and NNLO predictions and ME-PS matching algorithms

Analysis strategy:

- Lepton+jets channel
- Backgrounds taken from MC
- Fake lepton background using matrix method
- Unfolding using Bayesian unfolding

5

JHEP 08 (2024) 182

13 TeV / 140 fb⁻¹

Differential cross-sections in $t\bar{t}$ +jets

JHEP 08 (2024) 182 13 TeV / 140 fb⁻¹

MiNNLOPS: improves leading jet pT, but doesn't improve in the rapidity separation to the 2nd leading jet
→ Most probably effect of matching

Prediction		Pv	vg+Py8	Pwe	G+Hw7	aMC	@NLO+Hw7	Sher	pa 2.2.12	Pwg+Py8 MiNNLOPS		
Observable	NDF	χ^2	<i>p</i> -value	χ^2	<i>p</i> -value							
$p_{\rm T}^{\rm jet-W1}$	10	6.2	0.79	4.1	0.94	2.7	0.99	1.8	1.0	3.4	0.97	
y ^{jet-W1}	10	1.8	1.0	1.6	1.0	2.3	0.99	1.1	1.0	2.7	0.99	
$p_{\mathrm{T}}^{\mathrm{jet-W2}}$	8	2.3	0.97	0.45	1.0	2.8	0.94	0.53	1.0	2.6	0.96	
y ^{jet-W2}	10	1.9	1.0	1.7	1.0	2.4	0.99	1.1	1.0	2.7	0.99	
$ \Delta y^{\text{jet-W1}-\text{jet-W2}} $	10	1.6	1.0	2.7	0.99	4.3	0.93	0.90	1.0	6.0	0.81	
$ \Delta \phi^{\text{jet-W1}-\text{jet-W2}} $	10	1.7	1.0	1.6	1.0	2.5	0.99	1.2	1.0	2.1	1.0	
$p_{\mathrm{T}}^{\mathrm{jet-rad1}}$	11	7.7	0.74	7.1	0.79	3.3	0.99	2.6	1.0	6.4	0.85	
y ^{jet-rad1}	10	1.6	1.0	2.8	0.99	3.4	0.97	0.69	1.0	3.0	0.98	
$ \Delta \phi^{\text{toplep}-\text{jet-rad1}} $	7	1.4	0.99	2.2	0.95	2.9	0.89	0.81	1.0	2.3	0.94	
$ \Delta \phi^{ ext{tophad} - ext{jet-rad}1} $	7	1.4	0.98	2.6	0.92	2.9	0.89	0.85	1.0	2.4	0.93	
$ \Delta \phi^{\text{jet-W1}-\text{jet-rad1}} $	10	1.6	1.0	2.9	0.98	3.4	0.97	0.77	1.0	2.7	0.99	
$m^{t\bar{t} - jet-rad1}$	8	7.7	0.46	6.5	0.59	4.4	0.81	4.4	0.82	5.5	0.71	
$p_{\rm T}^{\rm jet-rad2}$	9	3.2	0.96	4.0	0.91	37.0	< 0.01	1.7	1.0	11.0	0.28	
y ^{jet-rad2}	10	1.4	1.0	3.9	0.95	2.4	0.99	0.20	1.0	5.3	0.87	
$ \Delta y^{\text{jet-rad1} - \text{jet-rad2}} $	10	1.6	1.0	4.0	0.95	4.0	0.95	0.13	1.0	5.4	0.86	
$ \Delta \phi^{\text{jet-rad1} - \text{jet-rad2}} $	10	1.4	1.0	4.0	0.95	2.4	0.99	0.25	1.0	5.2	0.88	
$ \Delta \phi^{\text{toplep} - \text{jet-rad2}} $	7	1.3	0.99	3.2	0.86	2.0	0.96	0.46	1.0	4.1	0.77	
$ \Delta \phi^{\text{tophad} - \text{jet-rad2}} $	7	1.2	0.99	3.2	0.87	2.1	0.96	0.46	1.0	4.1	0.77	
$ \Delta \phi^{\text{jet-W1}-\text{jet-rad2}} $	10	1.3	1.0	3.8	0.95	2.4	0.99	0.22	1.0	5.1	0.88	
m ^{jet-rad1 – jet-rad2}	9	6.2	0.72	6.7	0.66	2.6	0.98	4.2	0.90	8.8	0.45	

6

Measurement of production in association with additional b-jets

arXiv: 2407.13473 submitted to JHEP 13 TeV / 140 fb⁻¹

Examples of Feynman diagrams of QCD processes • leading to tt b b final state:

Examples of Feynman diagrams of electroweak processes leading to $t\bar{t}b\bar{b}$ final state:

- Non-trivial predictions due to very different scales involved starting from m_{top} down to momenta of soft additional radiations.
- Modelling of additional *b*-quark jets available at various state-ofthe-art NLO ME+PS predictions.
- Important background for many processes: ttH(bb), four tops and others

7

Measurement of production in association with additional b-jets

Analysis strategy:

- Dilepton channel
- Background corrections using semi-data-driven method:
 - Fake leptons (small background)
 - Miss-tagged $t\overline{t}$ + light jets and $t\overline{t}$ + c jets estimation
- Classification of events and b-jet assignment crucial

Fraction of events with correctly assigned *b*-jets:

- By the algorithm: 53 % (56%) in $t\bar{t}$ events with at least 3 (4) *b*-jets.
- Selecting the leading $p_{\rm T}$ *b*-jets: 42 % (27%).
- Unfolding using Bayesian unfolding

8

arXiv: 2407.13473

submitted to JHEP

13 TeV / 140 fb⁻¹

Measurement of production in association with additional b-jets

A similar study is done using $t\bar{t} + c\bar{c}$ events: <u>arXiv: 2409.11305</u> submitted to PLB

35th Recontres de Blois Dominic Hirschbühl | 24.10.2024

9

 $\Delta R_{\rm avg}^{bb}$

Cross-sections of $tt\gamma$ production

arXiv: 2403.09452 submitted to JHEP 13 TeV / 140 fb⁻¹

Analysis strategy:

- Dilepton and Lepton+jets channel with one additional photon
- Neural networks to enhance separation of $t\bar{t}\gamma$ production vs all backgrounds
- Profile-likelihood fit / profile likelihood unfolding

- Radiative production: probe structure of $t\gamma$ coupling
- Sensitive to new physics: top quark anomalous dipole moments, EFT interpretations (dim-6 operators - CtW, CtB)

Cross-sections of $tt\gamma$ production

Result:

 $\begin{aligned} \sigma_{t\bar{t}\gamma}(\text{lep + jets}) &= 707^{+49}_{-46} = 707 \pm 6 \text{ (stat)} \quad ^{+49}_{-46}(sys) \text{ fb} \\ \sigma_{t\bar{t}\gamma}(\text{dilepton}) &= 117.7^{+8.3}_{-7.9} = 117.7 \pm 1.7 \text{ (stat)} ^{+8.1}_{-7.7}(sys) \text{ fb} \end{aligned}$

	$\Delta \sigma_{t\bar{t}\gamma \text{ production}} / \sigma_{t\bar{t}\gamma \text{ production}} (\%)$					
Source	Single lepton	Dilepton	Combination			
Statistical uncertainty	1.8	3.3	1.5			
MC statistical uncertainties	1.5	1.5	1.0			
Modelling uncertainties						
$t\bar{t}\gamma$ production PS uncertainty	2.4	3.7	0.9			
Other $t\bar{t}\gamma$ production modelling	5.1	1.6	3.0			
$t\bar{t}\gamma$ decay modelling	0.3	1.3	0.8			
$t\bar{t}\gamma$ decay normalisation	2.4	3.1	2.1			
Prompt photon background normalisation	1.5	2.0	2.0			
Fake photon background estimate	0.8	1.5	1.6			
Fake lepton background estimate	0.4	_	0.1			
Other Background modelling	0.7	0.2	0.5			
Experimental uncertainties						
Jet uncertainties	3.5	3.0	1.7			
B-tagging uncertainties	2.6	2.1	1.0			
Photon	0.5	1.5	0.8			
Lepton	1.3	1.4	1.3			
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.3	0.4	0.4			
Pile-up	0.3	0.7	0.5			
Luminosity	0.8	1.0	0.8			
Total systematic uncertainty	7.6	7.1	5.0			
Total uncertainty	7.8	7.7	5.2			

Cross-sections of $tt\gamma$ production

- EFT limits determined using photon p_T of $tt\gamma$ production
- Relevant dim-6 Wilson coefficients: C_{tB} and C_{tW}
- Independent and simultaneous fits to all coefficients
- 2D marginalised confidence intervals from combined $tt\gamma$ production

arXiv: 2403.09452 submitted to JHEP 13 TeV / 140 fb⁻¹

Run: 267638 Event: 193690558 2015-06-13 23:52:26 CEST

Electroweak process Access to the CKM matrix element V_{tb} Interfere with $t\bar{t} \rightarrow$ not easy to define

n

g

19399999

Measurement of tW production

Strategy:

- Event selection: 2 leptons, at least one b-jet
- Main backgrounds from MC: $t\bar{t}$, W+jets, Z+jets, and diboson
- Classify events into 3 signal regions: 1*j*1*b*, 2*j*1*b*, 2*j*2*b*
- Boosted decision to separate signal from background
- Profile Likelihood Fit to extract cross section

35th Recontres de Blois Dominic Hirschbühl | 24.10.2024

14

arXiv: 2407.15594 Submitted to PRD 13 TeV / 140 fb⁻¹

Measurement of tW production

Uncertainty source	$\Delta \sigma_{tW} / \sigma_{tW}$ [%]
$t\bar{t}$ modeling	13.2
Jet energy scale	12.0
$E_{\rm T}^{\rm miss}$ reconstruction and calibration	11.0
tW modeling	7.9
Jet energy resolution	7.0
Jet flavor tagging	3.7
Pileup	2.5
Lepton (<i>e</i> and μ) reconstruction and calibration	1.9
Other background modeling	0.9
Luminosity	0.8
PDF (tW and $t\bar{t}$)	0.6
MC statistical uncertainty	4.7
Total systematic uncertainty	19.2
Data statistical uncertainty	1.4
Total uncertainty	19.3

arXiv: 2407.15594 Submitted to PRD 13 TeV / 140 fb⁻¹

Result:

 $\sigma_{tW} = 75 \pm 1 \text{ (stat)} + 15 \text{ (sys)} \pm 1 \text{ (lumi)} \text{ pb}$ \rightarrow uncertainty of 20%

This result can converted into a limit on $|f_{LV}V_{tb}|$ using $|f_{LV}V_{tb}| = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$

 f_{LV} : model-independent left-handed form factor

 $\rightarrow |f_{LV}V_{tb}| = 0.97 \pm 0.10$

Observation of $t\bar{t}$ production in p+Pb collisions

In p + Pb collisions, measurements of top quarks access regions of nuclear PDFs that are not well-constrained by other measurements (e.g., gluon nPDFs)

Strategy:

- Lepton+jets and dilepton channel
- Fake lepton background is estimated from data all others are taken from simulations
- Simultaneous profile likelihood fit in 6 regions of H_T

arXiv: 2405.05078 Submitted to JHEP 8.16 TeV / 165 nb⁻¹

Observation of $t\bar{t}$ production in p+Pb collisions

Nuclear modification factor:

 $R_{pA} = \sigma_{t\bar{t}}^{p+Pb} = 1.090 \pm 0.039 \, (stat)^{+0.094}_{-0.087}(syst)$

35th Recontres de Blois Dominic Hirschbühl | 24.10.2024

18

arXiv: 2405.05078

Submitted to JHEP

8.16 TeV / 165 nb⁻¹

Hunt for new top-quark decays (and new production modes)

Search for flavour-changing neutral-current couplings

Strategy:

- Search with dilepton SS (e, μ) events and 3 leptons with ≥ 1 jets, ≥ 1 bjets events
- Neural networks to separate signal from background
- Simultaneous profile likelihood fit in 7 regions

35th Recontres de Blois Dominic Hirschbühl | 24.10.2024 W^{+}

u/c

Search for flavour-changing neutral-current couplings

Search for lepton-flavour violating $\mu\tau qt$ interactions

 S_1

scalar leptoquark S₁ model

u.

- cLFV via neutrino oscillations is highly suppressed (BR~10⁻⁵⁵)
- Some BSM processes (leptoquarks, SUSY, 2HDM) involve cLFV

Strategy:

- Model independent EFT approach for $tq\ell\ell'$ operators
- Search for scalar leptoquark S_1
- Events with SS $\mu\mu$ and one hadronically decay τ are selected
- One SR and two CR for non-prompt leptons and fake τ g leeleeleelee contributions
- Profile likelihood fit to H_T distributions

Search for lepton-flavour violating $\mu \tau q t$ interactions

7-41x better than previous indirect limits

23

Test of lepton flavour universality

Lepton flavour universality (LFU) is a fundamental axiom of SM

 \rightarrow Couplings of charged leptons e, μ, τ to W, Z are independent of the lepton mass **Strategy**

Measure ratio:

Simultaneous maximum likelihood fit to $t\overline{t}$ events ("b-tag counting method") and Z counts:

- Yields in $t\bar{t} \rightarrow e\mu \ 1b/2\bar{b}$ and $Z \rightarrow ee/\mu\mu$ regions
- $m\ell\ell$ spectrum in $t\bar{t} \rightarrow ee/\mu\mu \ 1b/2b$ regions Parametrise fitted yields using deviations in BR

35th Recontres de Blois Dominic Hirschbühl | 24.10.2024 Eur. Phys. J. C 84 (2024) 993

13 TeV / 140 fb⁻¹

Test of lepton flavour universality

- Most precise e/μ universality test (0.45%)
- Improves on the previous PDG average
- No evidence for LFU violation

Measurement dominated by systematic uncertainties: PDF, modelling, lepton uncertainties

Eur. Phys. J. C 84 (2024) 993 13 TeV / 140 fb⁻¹

Search for same-charge top-quark pair production

Same-charge top-quark pair production is strongly suppressed in the SM

- Very clean signature in the dileptonic final state
- Observation would imply the existence of new underlying physics
- Signal modelling can be modelled via EFT operators $c_{tu}^{(1)}$, $c_{0u}^{(1)}$, $c_{0u}^{(8)}$

Search for same-charge top-quark pair production

Strategy:

- Neural networks used to split events in signal regions and validation regions
- SRs are split by charge and EFT operators
- Control regions used to constrain normalisation of the background processes
- Combined binned profile-likelihood fit over the SRs+CRs

arXiv: 2409.14982 submitted to JHEP 13 TeV / 140 fb⁻¹

Quantum entanglement in top-quark pairs

Top quark decay products can be used to learn about top-quark spin or top-quark pair spin correlations **Entanglement:** quantum state of one particle cannot be described independently from another particle

 \rightarrow there are stronger correlations than classical system would exhibit

Typical example: a system of two fermions in a spin-singlet state

At the LHC initial state not controlled (no pure state) \rightarrow mixed state \rightarrow described in general by density matrix (ρ)

 \rightarrow for two top quarks \rightarrow spin density matrix

Entanglement can be characterized by their spin correlations magnitude

Quantum entanglement in top-quark pairs

A quantitative measure of the entanglement: concurrence $C[\rho]$ of the spin density matrix ρ : \rightarrow Sufficient and necessary condition for entanglement: $C[\rho] > 0$

Entanglement observable D:

$$\frac{1}{\sigma_{\ell\bar\ell}} \frac{{\rm d}\sigma_{\ell\bar\ell}}{{\rm d}\cos\varphi} = \frac{1}{2} (1 - D\cos\varphi), \ D = \frac{{\rm tr}[{\bf C}]}{3} \qquad D = -3 \langle \cos\varphi\rangle$$

 φ : angle between the two lepton directions measured in their parent top quark and antiquark rest frames **Entanglement condition:**

 $Tr[C] < -1 \rightarrow D < -1/3$

Dominant contribution: gg fusion with tops in spin singlet state

Observation of quantum entanglement in top-quark pairs

Nature 633 (2024) 542

13 TeV / 140 fb⁻¹

Strategy:

Dilepton channel with $e\mu$ final state ≥ 2 jets and ≥ 1 b-tagged jet

 \rightarrow 90% signal purity

Correction of measured D to particle level D

 $D = -0.537 \pm 0.002 (stat) \pm 0.019 (syst)$ $\gg 5 \sigma \text{ below entanglement limit}$ $\rightarrow \text{ Observation of entanglement}$

Dominant uncertainties: signal modelling

Conclusion

- Could only show a selection highlights from many many top-quark analyses
- Top-Quark processes are now also measured with high precision in association of heavy flavour quarks, photons, vector bosons
- Various searches for new physics either for model-independent searches using EFT or looking for specific model haven't shown any hints yet
- Overview of all public top analyses can be found here: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>

Invariant mass of top-quark pair

Conclusion

The permutation with the minimal $-\ln(w)$ is chosen, and the first two *b*-jets in the permutation are assigned to top quarks:

$$-\ln w = \begin{cases} \left(\Delta R_{\ell 1b1} - \Delta R_{\ell 1b}^{\min}\right)^{2} + \left(\Delta R_{\ell 2b2} - \Delta R_{\ell 2b}^{\min}\right)^{2} + \left(\max(\Delta R_{b1b3}, \Delta R_{b2b3}) - \Delta R_{bb}^{\max}\right)^{2} & \text{if } N_{b\text{-jets}} = 3\\ \left(\Delta R_{\ell 1b1} - \Delta R_{\ell 1b}^{\min}\right)^{2} + \left(\Delta R_{\ell 2b2} - \Delta R_{\ell 2b}^{\min}\right)^{2} + \left(\Delta R_{b3b4} - \Delta R_{bb}^{\min}\right)^{2} & \text{if } N_{b\text{-jets}} \ge 4 \end{cases}$$

Fraction of events with correctly assigned *b*-jets:

- By the algorithm: 53% (56%) in $t\bar{t}$ events with at least 3 (4) *b*-jets.
- Selecting the leading $p_{\rm T}$ *b*-jets: 42 % (27%).

35

Observation of $t\bar{t}$ production in p+Pb collisions

	$1\ell 1b \ e+jets$		$1\ell 1b \ \mu$ +jets		$1\ell 2b$ incl e +jets			$1\ell 2b$ incl μ +jets			$2\ell 1b$			2ℓ2bincl				
tī	214	±	24	194	±	21	405	±	21	373	±	19	55	±	6	79	±	5
<i>t</i> -channel	6.9	±	1.0	6.4	±	1.0	7.7	±	0.9	7.1	±	0.9	0	±	0	0	±	0
W+b	37	±	19	37	±	19	16	±	8	17	±	9		_			_	
W+c	120	±	40	110	±	40	14	±	7	17	±	8		_			_	
W+light	80	±	40	80	±	40	4.8	±	3.1	9	±	5		_			_	
Z+b	16	±	13	8	±	7	8	±	7	3.7	±	3.0	12	±	9	2.9	±	2.4
Z+c	9	±	14	5	±	7	1.7	±	2.6	0.9	±	1.4	6	±	9	0.4	±	0.6
Z+light	28	±	16	12	±	7	1.2	±	1.1	0.9	±	0.5	11	±	6	0.34	±	0.25
Diboson	0.32	±	0.16	0.29	±	0.15	0.055	±	0.029	0.039	±	0.02	0.53	±	0.27	0.049	±	0.025
tW	17.1	±	3.0	15.5	±	2.7	13.6	±	3.2	12.1	±	2.9	5.1	±	2	2.4	±	1.2
Fake lepton	630	±	50	170	±	40	110	±	19	21	±	12	1.9	±	1	0.51	±	0.27
Total	1154	±	34	648	±	24	582	±	21	462	±	18	91	±	7	85	±	5
Data	1162			641			570			464			90			97		