Associated production of top quarks with vector bosons in CMS

Recontres de Blois on Particle Physics and Cosmology

Carlos Vico Villalba on behalf of the CMS collaboration

ICTEA

EUROPEAN UNION

European Regional Development Fund

Grant PID2020-113341RB-I00 funded by:

MINISTERIO DE CIENCIA E INNOVACIÓN

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

A summary of TOP quark physics in the CMS experiment

- (In this talk!) associated production: simultaneous appearance of top quarks and vector bosons
- At the LHC, associated production can happen in two ways:
 - Single top production (t+X)
 - Top quark pair production (tt+X)
 - $X = (W, Z, \gamma)$
- TOP quark physics programme covers a wide range of different channels accesible at the LHC.
- CMS has thoroughly studied the top quark and its properties.

In this talk, recent t+X and tt+X CMS measurements will be covered!

tW production at 13.6 TeV

tW measurements at 13.6 TeV

Data / Pred

- the tW process is the second most common production channel of top quarks via electroweak mechanisms (single top modes).
- tW (NLO) interferes with tt. •
 - Clearly background dominated.
 - Two methods can be used to remove the interferences: Diagram Removal (DR) and **Diagram Subtraction** (DS). Events
- **Baseline selection:**
 - Dilepton channel: $e^{\pm}\mu^{\mp}$.
 - Leading lepton $p_T > 25$ GeV
 - $m_{\ell\ell} > 20 \text{ GeV}.$
 - Categorisation based on number of jets and b tags.

DR scheme is used for the nominal analysis, and the difference with respect to DS scheme is taken as an uncertainty.

Arxiv: 2409.06444

Submitted to IHEP

- A Random Forest (RF) is used to discriminate tW from tt and DY.
- To extract the signal, a maximum likelihood fit is performed using the two RF distributions and the subleading jet p_T distribution in the 2j2b region (which is used as a control region).

- The measured cross section is: $\sigma_{tW} = 82.3 \pm 2.1 \text{ (stat)} \pm 9.8 \text{ (syst)} \pm 3.3 \text{ (lumi) pb.}$
 - Compatible with SM predictions at aNNLO+aN³LL [JHEP05(2021)278]

tW measurements at 13.6 TeV

- The differential measurement is performed using 1j1b with a veto on the presence of loose jets in the final state.
- Differential cross sections are measured as a function of several variables.
 - Leading lepton p_T $m(e^{\pm}, \mu^{\mp})$
 - jet p_T

• $p_{\rm Z}(e^{\pm},\mu^{\mp},j)$

- $\Delta \phi(e^{\pm}, \mu^{\mp})$ $m_T(e^{\pm}, \mu^{\mp}, j, p_T^{miss})$
- Signal extraction and unfolding to fiducial region at particle level are performed using TUnfold.
- The results are normalised to the fiducial cross section
- between • Overall agreement data and expectations within uncertainties
- Compatible results between the DR and DS schemes.

Evidence of tWZ at 13 TeV

Evidence of tWZ at 13 TeV

- The tWZ process occurs in the electroweak production of a top, a W and a Z boson.
- It has several interesting features:
 - Never been observed.
 - Very small cross section (σ_{theo} (NLO QCD) ~136 fb)
 - Sensitive to couplings of three of the most studied particles at the LHC!
- Measuring its properties also constitute a **challenge** given the **large ttZ background.**
 - Similar issue to tt vs tW... tWZ and ttZ interfere at NLO.
 - Also similarly → DR/DS schemes are used here for signal modeling.

Pure tWZ production

ttZ production

PLB 855 (2024) 138815 Published in PLB

tWZ!!

First evidence of

Evidence of tWZ at 13 TeV

• Four signal regions are defined

	$SR_{3\ell,3j}$	$SR_{3\ell,2j}$	$\mathrm{SR}_{4\ell}$	SR ^{Boosted}
tWZ signal	77.47 ± 0.12	28.19 ± 0.07	15.98 ± 0.06	5.44 ± 0.02
tīZ Nonprompt leptons	657.9 ± 1.6 139 + 42	122.76 ± 0.61 170 ± 51	113.86 ± 0.64 1.02 ± 0.31	59.03 ± 0.50 1 94 + 0 58
tZq	86.45 ± 0.78	108.69 ± 0.71	0.29 ± 0.04	4.37 ± 0.17
ZZ WZ	22.7 ± 2.4 166.4 ± 3.3	60.6 ± 4.1 227.8 ± 4.0	20.0 ± 2.3 0.59 ± 0.19	0.30 ± 0.29 6.84 ± 0.66
VV(V)	15.51 ± 0.11	10.55 ± 0.09	1.35 ± 0.03	0.64 ± 0.02
γ	108.30 ± 0.99 54.1 ± 2.6	49.4 ± 1.2 78.3 ± 3.7	17.32 ± 0.34 6.92 ± 0.95	6.26 ± 0.19 1.08 ± 0.31
Total backgrounds	1249 ± 42	822 ± 51	159.9 ± 2.6	80.8 ± 1.1
Data	1463	849	180	77

• In order to increase the discrimination power between signal and backgrounds, DNNs are trained

Evidence of tWZ at 13 TeV

- The signal extraction is performed in a binned likelihood fit to:
 - DNN score for $SR_{3\ell,3j}$
 - DNN score for $SR_{3\ell,2j}$ (splitted in two)
 - The b tag multiplicity for $SR_{4\ell}$
 - Summed event yields in both boosted SRs.
- The signal strength is measured:
 - $r_{tWZ} = 2.6 \pm 0.4$ (stat) ± 0.7 (syst)
 - $\sigma_{tWZ} = 354 \pm 54$ (stat) ± 95 (syst) fb
 - Two standard deviations above the SM!
 - Three standard deviations above the background only prediction.

- The tZq process is also part of the **top+Z processes**, at least as much as tWZ and ttZ.
 - At LO the three process can be distinguished by their jet multiplicity
 - At NLO, interference terms between tWZ and ttZ appear.
- tWZ and ttZ have been historically measured separately.
 - But interference effects are non-negligible and to be better understood
- In this analysis: both ttZ and tWZ are measured jointly.
 - This can also provide sensitivity to EFT operators

ttZ, tWZ and tZq at LO in QCD

CMS-PAS TOP-23-004

• Events are selected based on 3ℓ selections.

Region	Requirement
Baseline	At least 3 ℓ with $p_T > 25, 15, 10$ GeV
	At least one opposite-charge same flavour pair (OCSF) with $m_{OCSF} \in [70, 110]$ GeV

• Further categorized using a DNN with three output nodes for tWZ+ttZ, tZq and background.

- The cross sections for ttZ+tWZ and tZq are measured both inclusively and differentially.
- For the inclusive cross section
 - The selection from before is extended to include additional CRs for the main backgrounds.

Number of jets

- The cross sections for ttZ+tWZ and tZq are measured both inclusively and differentially.
- For the differential cross section
 - The cross sections are extracted from a binned likelihood fit.
 - Each unfolded bin is assigned a free parameter in the fit.

Search for FCNC in the top sector

- Flavor Changing Neutral Currents (FCNC) are couplings of the top quark to neutral bosons (Z, γ) that modify the flavour of the top quark, but the charge remains intact.
 - Extremely suppresed in the SM. Low branching ratios (BRs).
 - But SM extensions can enhance the BRs.
- These couplings can be studied as an Effective Field Theory in terms of a set of dimension-6 operators.

$$\mathcal{L}_{eff}^{full} = \mathcal{L}_{SM} + e\Sigma_{q=u,c} \kappa_{tq\gamma} \bar{q} \left(\lambda_{tq\gamma}^L P_L + \lambda_{tq\gamma}^R P_R \right) \frac{i\sigma^{\mu\nu}q_{\nu}}{m_t} tA_{\mu} + H.c$$

- The $\kappa_{tq\gamma}$ operators are proportional to the Wilson Coefficients and the new physics scale.
- These operators of the extended theory are measured in tt-like and single-top-like topologies.

- Selection based on $1\ell + \gamma$ +jets
- Two signal regions are defined:
 - SR1: $N_j = 1$, $N_b = 1$
 - SR2: $N_j \ge 2$, $N_b = 1$
- The analysis distinguishes between the potential FCNC signatures and the backgrounds by combining information from several observables.
- This is done using Boosted Decission
 Trees (BDTs).
 - 8 different BDTs are trained:
 - Each lepton flavor (e, μ)
 - Each FCNC operator ($\kappa_{tu\gamma}, \kappa_{tc\gamma}$)
 - Each SR (SR1, SR2)

- The upper limits on the signal cross sections and branching fractions are obtained in a maximum likelihood fit to:
 - 4 BDT at once splitted into 3 data taking years (12 BDT in total per operator).

		Observed limit	Expected limit	$\pm 1\sigma$ (expected limit)	$\pm 2\sigma$ (expected limit)
SR1	κ _{τυγ}	12.3×10^{-3}	11.6×10^{-3}	$(9.7 - 14.4) \times 10^{-3}$	$(8.1 - 17.4) \times 10^{-3}$
	κ _{tcγ}	15.3×10^{-3}	20.1×10^{-3}	$(16.9 - 24.4) \times 10^{-3}$	$(14.4 - 29.3) \times 10^{-3}$
	$\mathcal{B}(t \to u\gamma)$	3.79×10^{-5}	3.39×10^{-5}	$(2.33 - 5.16) \times 10^{-5}$	$(1.65 - 7.55) \times 10^{-5}$
	$\mathcal{B}(t \to c\gamma)$	5.85×10^{-5}	10.11×10^{-5}	$(7.13 - 14.95) \times 10^{-5}$	$(5.22 - 21.44) \times 10^{-5}$
SR2	κ_{tuy}	6.3×10^{-3}	7.5×10^{-3}	$(6.3 - 9.1) \times 10^{-3}$	$(5.5 - 11.0) \times 10^{-3}$
	K _{tcy}	7.9×10^{-3}	8.3×10^{-3}	$(6.8 - 10.0) \times 10^{-3}$	$(6.0 - 11.8) \times 10^{-3}$
	$\mathcal{B}(t \to u\gamma)$	0.98×10^{-5}	1.41×10^{-5}	$(0.99 - 2.09) \times 10^{-5}$	$(0.75 - 3.02) \times 10^{-5}$
	$\mathcal{B}(t \to c\gamma)$	1.57×10^{-5}	1.71×10^{-5}	$(1.14 - 2.52) \times 10^{-5}$	$(0.89 - 3.51) \times 10^{-5}$
SR1 + SR2	$\kappa_{tu\gamma}$	6.2×10^{-3}	6.9×10^{-3}	$(5.9 - 8.4) \times 10^{-3}$	$(5.1 - 10.1) \times 10^{-3}$
	κ _{tcy}	7.7×10^{-3}	7.8×10^{-3}	$(6.7 - 9.7) \times 10^{-3}$	$(5.7 - 11.5) \times 10^{-3}$
	$\mathcal{B}(t \to u\gamma)$	0.95×10^{-5}	1.20×10^{-5}	$(0.89 - 1.78) \times 10^{-5}$	$(0.64 - 2.57) \times 10^{-5}$
	$\mathcal{B}(t \to c\gamma)$	1.51×10^{-5}	1.54×10^{-5}	$(1.13 - 2.37) \times 10^{-5}$	$(0.81 - 3.32) \times 10^{-5}$

- In this talk we have covered some of the most recent analysis regarding tTX+tX physics at the LHC from the CMS collaboration.
 - A measurement of single top production in association with a W boson (tW)
 - A measurement of single top production in association with a W and a Z boson (tWZ)
 - A measurement of tops with Z bosons (ttZ+tWZ, tZQ)
 - A search for new physics using top quarks and photons (tGq)
- The top quark proves himself again as an excellent handle for SM measurements, as well as searches for physics beyond-the-SM.
- The <u>CMS website</u> is filled with more results, so check them out!

Thank you very much for your attention (and to the organisers)

Backup

- The cross sections for ttZ+tWZ and tZq are measured both inclusively and differentially.
- For the differential cross section
 - The cross sections are extracted from a binned likelihood fit.
 - Each unfolded bin is assigned a free parameter in the fit.

Evidence of tWZ at 13 TeV

Region	Requirement				
	At least 3 ℓ with $p_T > 25, 20, 20$ GeV				
Baseline	At least one opposite-charge same flavour pair (OCSF) with $ m_{OCSF} - 91.2 < 15$ GeV				
	>2 jets, at least one of these b-tagged				
Low-Pt	$SR_{3\ell,3j}$	>3 jets			
	$SR_{3\ell,2j}$	== 2 jets			
		Fourth lepton with $p_T > 10$ GeV			
	$SR_{4\ell}$	The two leptons not OCSF are required not to be OCSF themselves, or to fail $ m_{OCSF} - 91.2 < 15$ GeV			
High-pT	$SR_{Had}^{Boosted}$	A large R-jet with soft-drop mass between 105 and 200 GeV, close to a b tag with $\Delta R < 0.8$			
	$SR_{Lep}^{Boosted}$	Non-Z lepton $p_T > 30$ GeV and close to a b tag with $p_T > 200$ GeV with $\Delta R < 2$			

• Additionally two control regions are defined to control ZZ and WZ backgrounds.

Region	Requirement
Baseline	Exactly one tight lepton: electron (e) or muon (μ)
	At least 1 jet
	At least 1 photon
	$p_T(e, \mu, \gamma) \to (> 35, > 30, > 30)$ GeV
	$ \eta \ (e, \mu, \gamma) \to (< 2.5, < 2.4, < 1.44)$
	AK4 Jets: p_T (j) > 30 GeV if $ \eta (j) < 2.7$, p_T (j) > 60 GeV if $ \eta (j) \in [2.7, 3.0]$
	Leptons must be isolated from jets (photons) by $\Delta R > 0.4$ (0.5)
SR1	Exactly one b-tagged jet and no additional jets (Nj = 1, Nb = 1)
SR2	At least 2 jets, one of which is b-tagged (Nj >= 2, Nb = 1)

- SR1 aims at enhancing single-top-like FCNCs
- SR2 aims at enhancing tt-like FCNCs