

# Studies of heavy-quark hadronisation in pp collisions with ALICE

Maja Karwowska (WUT), on behalf of the ALICE collaboration



35th Rencontres de Blois, 20-25.10.2024



# Probing hadronisation in the pQCD scheme



the fragmentation function for charm and beauty
can be studied via heavy-flavour particle ratios 2

# The ALICE experiment in Run 2



# Upgraded ALICE in Run 3



# Non-prompt D-meson cross sections



Pythia: POZ TAMU Slostra nieh ę 2006 026; 2005a) 014018 CPC 101 (201 J

arXiv:2402.16417

(2024)

ALI-PUB-568820

ALI-PUB-568

5

# Non-prompt $\Lambda_c^+$ cross sections

#### Both **TAMU** and **FONLL underestimate** $\Lambda_c^+$ cross section at low $p_T^-$



 $\Lambda_{c}^{+}$ : weighted average of the results from  $\Lambda_{c}^{+} \rightarrow pK^{0} \rightarrow p\pi^{+}\pi^{-}$  and  $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ 

Phys. Rev. D 108, 112003

<u>(2023)</u>

TAMU: He et al., Phys. Lett. B 795 (2019) 117 FONLL: Cacciari et al., JHEP05 (1998) 007

6

arxiv:2402.16417 (2024)

Similar fractions for **prompt and non-prompt** D mesons.

FONLL uses fragmentation functions based on e<sup>+</sup>e<sup>-</sup> measurements, and it describes the data  $\rightarrow$  fragmentation universality preserved in the meson sector.

Results compatible for different centre-of-mass energies.



## Strange-meson-to-meson ratio

Results in general compatible across different centre-of-mass energies.

**PYTHIA 8** models generally **underestimate** the data. **POWLANG** models **overestimate** the data.

Catania is compatible with the data in a limited  $p_{T}$  range.



atania

Greco

136622

Jerauc

<sup>o</sup>ythia:

Sjöstrand

J H E P

(2006)

026;

101

(2015) 159

8

302

803

Skands

# Beauty fragmentation fraction ratio

Non-prompt  $D_{S}^{+}/(D^{0}+D^{+})$ : main ingredient to evaluate the **fragmentation fraction ratio** of **beauty guarks** into strange-to-non-strange **B mesons**.

Result **consistent** with FONLL + PYTHIA 8 and previous results, including **e<sup>+</sup>e<sup>-</sup>** collisions



9

arxiv:2402.16417

(2024)

**Depends on p\_{T}:** larger ratio at lower  $p_{T}$ . PYTHIA 8 with Monash tune (tuned to e<sup>-</sup>e<sup>+</sup> measurements) largely underestimates the data. Other models, implementing modified hadronisation, are closer to the data. Strange charm baryons: all models tend to underestimate the data

larger enhancement than for non-strange charm?

**Modified** mechanisms of charm- and beauty-quark hadronization in pp collisions compared to e<sup>+</sup>e<sup>-</sup> collisions (in-vacuum fragmentation).



## Charm fragmentation fractions

- assumed universality of fragmentation functions
- ALICE: significantly **larger fraction** of heavy quarks hadronising into **baryons** in **pp collisions** compared to leptonic collisions with a corresponding **decrease** of **non-strange D mesons**.
- compatible results at different centre-of-mass-energies.

~x3 enhancement of  $\Lambda_c^{\ +}$  fraction ~x1.2-1.5 decrease for charm mesons



$$\Lambda_{c}^{+}$$
 from  $\Sigma_{c}^{0,++}$ (2455) decay

 $\Lambda_{c}^{+}/D^{0}$  ratio is compatible at different center-of-mass energies.

Around 40% of  $\Lambda_c^+$  comes from  $\Sigma_c^{0,++}(2455)$  decay  $\rightarrow$  increased non-prompt  $\Lambda_c^+$  production partially contributes to increase in overall  $\Lambda_c^+/D^0$  ratio.

SHM + RQM is close to data for  $\Lambda_c^+(\leftarrow \Sigma_c^{0,++}(2455))/\Lambda_c^+$ .

PYTHIA Mode 2 describes results for  $\Lambda_c^+/D^0$ , but fails to describe  $\Lambda_c^+(\leftarrow \Sigma_c^{0,++}(2455))/\Lambda_c^+$ .



Sjöstrand 36622 026; CPC 000 101 (2015) 159

12

(2022)

Phys. Rev. Lett. 128, 012001

<sup>0,++</sup> ratios

# First measurement of $\Sigma_{c}^{0,++}$ (2520) at the LHC



ALICE measurement **compatible with e<sup>+</sup>e<sup>-</sup>** (*p*<sub>T</sub>-integrated) and SHM+RQM. PYTHIA 8 Monash **overestimates** the data, **CR-BLC** tunes **underestimate** them.



SHMc: CR-E + MHS 3elle: Belle, <sup>o</sup>ythia: Andr Sjöstranc Phys **HE** D :PO2 (2018) (2006) (201 (201 072005 026; 3024 -121 003 CPC 101 (2015) 159

# $\Sigma_{c}^{0,++}$ ratios – different PYTHIA 8 settings

PYTHIA 8 Mode {0,2,3} underestimates the data.

PYTHIA 8 Mode 2 parameter probQQ1toQQ0join\_charm controls the amount of the suppression of  $\Sigma_c$  production relative to  $\Lambda_c$ .

- $\Sigma_c^{0,++}(2520)$  more likely to decay to  $\Lambda_c^+$  than  $\Sigma_c^{0,++}(2455)$   $\rightarrow$  amount of  $\Sigma_c^{0,++}(2520)$  production modifies the  $\Lambda_c^+(\leftarrow \Sigma_c^{0,++}(2455))/\Lambda_c^+$  feeddown fraction.
- Measurement important to understand the role of **spin-1 diquarks** for **charm-baryon hadronisation**.

 $\Sigma_c$  measurements essential for tuning the model.



Pythia: Sjöstrand et al., JHEP05 (2006) 026; CPC 191 (2015) 159 CR-BLC: Christiansen et al., JHEP 08 (2015) 003

# Non-prompt fractions in Run 3

- $p_{T}$  range extended to  $0 < p_{T} < 24$  GeV/c for D<sup>0</sup> and  $1 < p_{T} < 24$  GeV/c for  $\Lambda_{c}$ .
- more granular results compared to Run 2

## $\Lambda_{c}^{+}$ non-prompt fraction in Run 3

- Pythia Monash **underestimates** the data
- Pythia with CR-BLC closer to the data over the full  $p_{\tau}$  range



#### D<sup>0</sup> non-prompt fraction in Run 3

- the data points tend to be overestimated by all Pythia models
- the data are slightly underestimated by EPOS 4



jöstranc <u>ല</u> . Ĭ ê 026 5) 034906 CPC 803 355 101 (1991)(2015) 8 2 -/ 159

15

# Summary

**D-mesons cross sections** and **meson-to-meson ratios** described well by existing models based on fragmentation functions evaluated from **e<sup>+</sup>e<sup>-</sup>** and ep measurements.

pQCD calculations do not describe well **baryon cross sections** and **baryon-to-meson ratios** 

- large enhancement at low and intermediate  $p_{T}$
- possibly larger enhancement for strange charm baryons

**Charm-quark hadronization** in pp collisions could occur via **additional mechanisms** compared to leptonic collisions.

Further  $\Sigma_c^{0,++}$  measurements essential to constrain model parameters and get insight on the role of spin-1 diquarks.

Some tension for the models in the description of the **non-prompt D**<sub>s</sub> fraction and **charm-strange baryon** enhancement.

#### More results to come from Run 3.



# Thank you for your attention!

© Klaus Barth



## Beauty baryon-to-meson ratio vs PYTHIA 8 Monash



# Non-prompt fractions in Run 3

### $\Lambda_{c}^{+}$ vs D<sup>0</sup> non-prompt fraction in Run 3

•  $\Lambda_c^+$  non-prompt fraction tends to be larger than D<sup>0</sup> non-prompt fraction

