IAS PROGRAM High Energy P January 8 - 26, 2024 Conference: January 22 - 25, 2024

Highlights of Accelerator Mini-workshop

(18-19, January 2024)

Yuhui Li (IHEP)

1

ATLAS Experiment @ 2023 CERN

IAS-HEP 2024 Mini-Workshop: Accelerator

- Accelerator parallel, hybrid on-line and in-person meeting
- ⚫ Tuesday-Friday, 2 days, 6 sessions, **16 talks**
	- ➢ 2 Switzerland (CERN)
	- ➢ 1 France (CEA, irfu)
	- \triangleright 1 Japan (KEK)
	- \triangleright 12 China (IHEP)

An Introduction to Future Accelerator based Projects in Asia/Australia

Jie Gao

Institute of High Energy Physics

- Colliders for high energy physics
- Nuclear physics
- Photon and spallation neutron sources
- Proton and Carbon therapy
- Summary

Future accelerator facilities in Asia and Australia: ILC250 GeV

.SRF technology has been well matured for the realization of the ILC, including industrial participation, based on the very successful Euro-XFEL completion constructed and stable operation since 2017, and with LCLS-II being in commissioning.

- SRF technology advances with high-G and -Q highly expected for future upgrades:
	- Nb-bulk, SW: \sim 50 MV/m, for \sim 1-TeV upgrade,
	- \bullet Nb3Sn, SW: > 50 MV/m, for > 1 -TeV upgrade, and
- ~70 MV/m, for further upgrade to reach beyond (up to ~3 TeV). \bullet Nb-bulk, TW:

Future accelerator facilities in Asia and Australia:CEPC

 nm

Emittance

 ε .

 6.5

from empty

 0.1

 0.14 0.16 0.27

1.8

0.8

uminosity per IP $(10^{34}$ cm⁻² s⁻¹)

 5.0

115

 16

 0.5

5

Future accelerator facilities in Asia and Australia: HIAF & CIADS

- **HIAF: High Intensity heavy ion Accelerator Facility**
- **CIADS: China Initiative Accelerator Driven System**
- Being built by IMP in Huizhou of Guangdong Prov.
- **HIAF:** Nuclear physics research
- Total budget: 2.8 B CNY \angle (424 M USD \$)
- **Schedule: 2018-2025**
- Construction started officially Dec. 2018

Two of 16 large-scale scientific infrastructure facilities approved by China Government during the 12th 5-year-plan 2016-2020

- **CIADS:** Nuclear waste transmutation
- Total budget: $4.0 B CNY$ $4(606 M USD$ \$)
- **Schedule: 2021-2027**
- Construction started officially July. 2021

Future accelerator facilities in Asia and Australia: SHINE-FEL

Future accelerator facilities in Asia and Australia: HEPS

 \sim 2000 vacuum chambers

Future accelerator facilities in Asia and Australia: HALF & SAPS

Hefei Advanced Light Facility (HALF)

The Southern Advanced Photon Source (SAPS) of IHEP in Dongguan **Sheng Wang**

- \Box The 4th generation (3.5GeV) diffraction-limited storage ring
- □ Brightness > 10^{22} phs/s/mm²/mrad²/0.1%BW
- □ SAPS will be located adjacent to CSNS
- \Box Planned to start construction around 2025
- \Box Cost about 30B RMB ~450M USD

SAPS is located at IHEP, Dongguan campus, Guangdong Province, China

Future accelerator facilities in Asia and Australia: Korea

10

Future accelerator facilities in Asia and Australia: Austrilia

Recent Projects in Australia

X-band test laboratory at University of Melbourne: X-LAB

- The southern hemisphere's first X-band radio-frequency test facility
- Electron test beam to be developed in 2024

Australian Bragg Centre for Proton Treatment and Research in Adelaide

- Houses a Radiance 330 proton beam therapy system, manufactured by ProTom International
- Australia's first Proton therapy facility, due for operation 2023

Future Projects in Australia

National Particle Treatment and Research Centre (NPTRC)

- In advanced design, but not yet committed to by government.
- Designed for Proton and Carbon therapy, with a research branchline proposed.

More proton therapy facilities are also proposed.

Rohan Down

 $X-LAB$

NPTRC proposal

Bragg Centre December 2022

EAJADE workshop on sustainability & assessment of future Acc.

WSFA2023

The International Workshop on **Sustainability in Future Accelerators**

September 25~27, 2023 Morioka, Japan

In the construction, operation, and post-experimentation phases of global large-scale accelerator projects, it is essential to minimize environmental impact and strive towards realizing a sustainable society. The focus of this workshop is to elucidate the current status and future challenges of these endeavors, particularly within the globally anticipated linear collider project

Local Organizing Committee Satomi Fujisaki (Iwate U) Kiyotomo Kawagoe (Kyushu U) Masao Kuriki (Hiroshima U) Shinya Narita (Iwate U) - Chair Aiko Shoji (Iwate Tohru Takahashi (Hiroshima U) Tohru Takeshita (Shinshu U) (Satoru Yamashita (Iwate Prefectural U)

The workshop is:

organized by e University co-organized by ohoku ILC Project Development Cetner Iwate Prefecture ILC Promotion Council High Energy Accelerator Organization upported by **Tohoku ILC promotion Council Accelerator Association Promoting Science and Technology**

Contact: wsfa-contact@huhep.org

Four blocks (not limited to future Higgs Factores and to Linear Colliders): I. Large-Scale Research Facilities & Sustainability/Life Cycle Assessment(LCA) II. Sustainable Accelerator Technologies III. Europe-Horizon and National Sustainability-Supporting Programmes IV. Green ILC and Local Industries

https://wsfa2023.huhep.org/; https://indico.desy.de/event/39980/

Highlights of the EAJADE Workshop on Sustainability (WSFA2023) & European LDG Working Group on Sustainability Assessment of Future Accelerators

> Maxim Titov **CEA** Saclay / CERN

EAJADE workshop on sustainability & assessment of future Acc.

Large-Scale Research Facilities & Sustainability/Life Cycle Assessment (LCA)

- Objective Assessment of Sustainability Aspects of New Large Infrastructures
- Experience from ESS on Green Facilities
- A Life Cycle Assessment of the CLIC and ILC Linear Collider Feasibility Studies
- The ISIS-II Neutron And Muon Source Life Cycle Assessment: An Introduction
- The HElmholtz LInear ACcelerator HELIAC
- CERN Accelerates Sustainability
- Optimisation of the FCC Power Consumption and Next Steps for Sustainability Studies
- A Sustainability Roadmap for C3
- A Sustainability Outlook for CLIC / ILC

Power Purchase Agreement - Running on Renewables

Different approaches to reduce impact of large electric power consumption:

- Reduce power (by higher efficiency)
- $-$ Re-use waste energy (heat)
- Modulate power according to availability (price)
- $-$ Use regenerative power

A real implementation of renewable energy supply:

A physical power purchase agreement (PPA) is a long-term contract for the supply of electricity at a defined, fixed price at the start and then indexed every year, and a consumer for a defined period (generally 20 years). Being considered for CERN, initially at limited scale. Advantages: price, price stability, green, renewable.

Must be a goal to run future accelerator at CERN primarily on green and more renewable energy with very low carbon footprint. However, energy costs will remain a concern.

If we have energy available at 12.5 g $CO₂/kWh = 12.5$ kton $CO₂/TWh$ (not unlikely in 2050): 20km accelerator construction \sim 20 years of operation. 1 km accelerator construction ~ 1 TWh annual electricity (annual LC operation 0.6 TWh)

EAJADE workshop on sustainability & assessment of future Acc.

Slide: Katie Morrow

II. Sustainable Accelerator Technologies

- \checkmark High-Efficiency Klystrons @ CERN
- Sustainable Accelerator R&D in the UK
- Experience from ESS on Green Facilities

III. Europe-Horizon & National Sustainability-Supporting Programs

- ◆ EU-Horizon EAJADE (M. Titov)
- \checkmark EU-Horizon iSAS (J. d' Hondt)
- Spanish Science Industry (E. Fernandez) \checkmark
- V EU-Japan Regional & Cluster Cooperation Heldesk (V. Fermaud)

tonnes of $CO₂$ • The most effective way to reduce the $CO₂$ emissions from the laser system is through improvements in efficiency

IV. Green ILC and Local Industries

- \checkmark Scenarios toward 2050 Carbon Neutrality in Japan and ILC (M. Yoshioka)
- Efforts of Taiheiyo Cement towards Carbon \checkmark Neutrality (Y. Ohgi)
- \checkmark The Future of Construction: Carbon-Negative Concrete for a Greener Tomorrow (K. Avadh)
- \checkmark Large-Scale Wooden Construction (Y. Shibuya)
- \checkmark Sustainable Forestry in the Tohoku region (K. Shibata)
- Quantitative Evaluation of Forest CO2 \checkmark Absorption in Ichinoseki City (H. Kikuchi)
- \checkmark Creation of a sustainable society model utilizing IoT technology and local resources (Y. Komiya)
- Commercialization of Low-Grade Waste Heat \checkmark Recovery (Y. Kouno)

Green ILC

Accelerator researchers are making following four efforts to achieve sustainable accelerator facilities

- ① Increasing the power efficiency and performance of accelerator components.
- ② Electricity used by accelerators should be provided by sustainable power sources instead of fossil fuels, and effective local use of the waste heat energy emitted from the accelerator.
- ③ To this end, we will help to increase the amount of sustainable electricity in the region and create regional energy management business using waste heat.
- ④ Cooperate to increase Green Carbon (from forests), Blue Carbon (from seaweed), and White Carbon $CO₂$ fixation by increasing wooden buildings) in the region to increase $CO₂$ absorption.
- **Sweden and Europe have liberalized their electricity markets and electricity is traded under free competition**.
- Electricity networks are interconnected and power is transmitted and distributed across borders.
- The objective of the electricity market is to use integrated resources as efficiently as possible to meet the demands of electricity users.
- The public can view the following electricity statuses at any time in real time (https://www.svk.se/omkraftsystemet/kontrollrummet/)

Green ILC

Load-bearing component (Wood)

Fire-stop layer (Gypsum board)

Surface material (Wood)

White Carbon

1-hour Fireproof COOL WOOD (Column)

Blue Carbon $(CO₂$ absorption by seaweed in coastal areas in the town of Hirono, northern Iwate Prefecture)

CO₂ absorption by seaweed is very promising because it is slightly better than that of forests.

SC Magnets for the FCCee Collider Ring

M. Koratzinos

Magnet is the major electricity consumer after SRF, and we pay twice for normal conducting magnets: one through ohmic losses, and again for removing the heat with our cooling and ventilation (CV) system.

Total contribution of the collider ring magnets is therefore **~100MW** at the top, 76% of which comes from the quads and sextupoles

Replace the NC Q+S. by HTS Mag.: zero Ohmic loss + higher packing factor

Potential additional benefit: More space (\sim 7%) for dipole and reduction of the RF power

SC for the FCCee collider

sextupole demonstrator

Choose a CCT magnet layout due to

- Ease of construction
- Good field quality
- ⚫ Quick design cycle

Other approaches (i.e. standard cosine-theta) will also be pursued

Demonstration of the HTS tape CCT magnet

18

Specifications: Aperture: 90mm Current: 260A Temperature: 40K Field gradient: 1000T/m2 Max. field @conductor:1.5T Crit. Current fraction: 49% Temp. margin: 14K

SC for the FCCee collider

Giovanni IADAROLA $(CERN)$

An Integrated Beam Physics Simulation Framework

Who uses Xsuite and for which applications?

LHC and HL-LHC

- Tracking for DA lattice only (M. Le Garrec, E. Maclean C. E. Montanari, T. Pugnat, D. Veres)
- Crab-cavity noise studies(A. Fornara, Uni. Manchester)
- Beam-beam weak-strong (G. Sterbini, S. Kostoglou, C. Droin, E. Lamb, D. Christie Uni. Manchester)
- Beam-beam strong-strong (X. Buffat)
- Wire compensation studies (P. Belanger, D. Kalchev TRIUMF)
- Collimation studies (F. Van Der Veken, N. Triantafillou, B. Lindstrom, M. D'Andrea, P. Hermes)
- Optics/orbit matching, including RDT matching
- (B. Lindstrom, K. Paraschou, C. Droin, S. Kostoglou, Y. Angelis)
- Non-linear corrections calculation (J. Dilly)
- Hollow e-lens studies (P. Hermes + students)
- Incoherent e-cloud effects (K. Paraschou)
- Beam instrumentation studies (D. Alves, K. Lasocha, SY-BI)

Injector complex (PSB, PS, SPS, LEAR, AD, ELENA)

- Space-charge studies (F. Asvesta, T. Prebibai)
- Cooling studies (D. Gamba, P. Kruyt)
- Instabilities with wakes and space-charge (X. Buffat)
- Slow extraction studies at PS and SPS (P. Arrutia Sota, T. Bass, F. Velotti, SY-ABT)
- Ion studies (E. Waagaard)
- Beam transfer simulations (F. Velotti, SY-ABT)
- MTE simulations, optics+tracking (A. Huschauer, starting)

Light sources (Petra IV, Elettra, Bessy III)

Tracking and DA

- **FCC**
- FCC-ee optics matching, tapering + RF phasing (M. Hofer, J. Keintzel, P. Kicsiny (L. Van Riesen-Haupt)
- FCC-ee DA studies (M. Hofer, L. Van Riesen-Haupt, EPFL) \bullet
- FCC-ee and FCC-hh beam-beam-SS&WS (P. Kicsiny, D. Di Croce, EPFL)
- Beamstrahlung, Bhabha (P. Kicsiny)
- FCC-ee and FCC-hh collimation studies (A. Abramov, G. Broggi)
- FCC-ee vibration studies (J.P. Salvesen, M.Hofer, LAPP Annecy collab.)
- Compton scattering studies (A. Abramov, I. Debrot, M. Hofer)
- Collective effects (M. Migliorati, A. Ghribi Uni Sapienza, A. Rajabi -Desy)

GSI/FAIR

- Space-charge simulations (A. Oeftiger and team)
- Slow extraction simulations SIS18 and SIS100 (P. Niedermayer, C. Cortes)
- **BTF studies (C. Cortes)**

Medical accelerators

- Slow-extraction for PIMMS (R. Tailor)
- Slow-extraction for MedAustron (F. Kuehteubl, E. Renner, et al.)

26

BNL - RHIC and EIC

- Optics calculations and tracking
- **Collimation studies**

Fermilab - Main Injector, Recycler, IOTA

- Tracking studies
- Impedance + space-charge simulations

CERN has developed various software tools :

- **MAD-X**, lattice description, optics calculation and design, tracking
- Sixtrack, a fast-tracking program: long singleparticle simulations
- Sixtracklib, a C/C++library for single-particle **tracking compatible with Graphics Processing Units** (GPUs)
- **COMBI**, simulation of **beam-beam** effects using strong-strong modelling
- **PyHEADTAIL, a Python toolkit for collective effects** (impedance, feedbacks, space charge, and e-cloud)

the Xsuite project since 2021

- Main goal: a modern Python toolkit the knowhow built in developing and exploiting MAD, Sixtrack, COMBI, PyHEADTAIL etc.,
- Designed for **seamless integration** among the different components and for extendability
- Designed to support different computing platforms, including multicore CPUs and GPUs from different vendors

CO₂ Reduction Optimization with Future

Colliders Design, Construction and Operation

Dou Wang, (IHEP)

Calculation Model for CEPC Construction Impact

Environmental impact of construction: raw material supply $(A1)$, material transport $(A2)$, \bullet material manufacture $(A3)$, material transport to work site $(A4)$, and construction process $(A5)$

- Main tunnel: 7.0 kton CO_2 e/km
- Carbon for construction: Main tunnel + other structures + transport $(+25%)$

- **Peak Carbon Dioxide Emissions**: China has pledged to reach carbon peak by 2030,
- **Carbon neutrality:** achieve a relative "zero emissions" before 2060 by planting trees and forests, saving energy and reducing emissions

2021~ 2030: realize peak carbon emissions

2031~ 2045: rapid reduction of carbon emissions

2046~ 2060: deep decarbonization, achieving carbon neutrality

8

CO2 Reduction Optimization with Future Colliders Design, Construction and Operation

150

nuclear(t CO2/GWh)

average 2035

 \blacksquare wind

 \blacksquare nuclear

CO2 Reduction Optimization with Future Colliders Design, Construction and Operation

Ref: Patrick JANOT and Alain BLONDEL, "The carbon footprint of proposed e⁺e⁻ Higgs factories", arXiv:2208.10466v4 [hep-ph] 23 Sep 2022.

High Q and High Gradient SRF Cavity Studies and Applications in Green Accelerators

Jiyuan Zhai (IHEP)

Huge RF power decrease: Super-conducting (SC) vs Normal-conducting (NC)

650 MHz cavities for CEPC Collider Higgs mode:

2.2 GV RF voltage shared by two beams, 30 MW SR per beam

- SC: $3E10@25$ MV/m, cell R/Q=107 Ω , 192 2-cell cavities
	- \sim 4 kW RF wall loss, \sim 8 kW RF AC power, \sim 3 MW cryogenic AC power

- NC: 4E4@25 MV/m, cell R/Q=270 Ω , 77 5-cell cavities

- \sim 1200 MW RF wall loss, \sim 2000 MW RF AC power, \sim 180 MW cooling AC power
- $-$ NC: 4E4@2 MV/m, cell R/Q=270 Ω , 960 5-cell cavities
	- \sim 100 MW RF wall loss, \sim 160 MW RF AC power, \sim 15 MW cooling AC power

Cryogenic power decrease with high Q Niobium cavities

- CEPC 650 MHz 2-cell cavity Q_0 at 2 K vs cryogenic AC power of total cavity wall loss: 1E10 ~ 9 MW, 3E10 ~ 3 MW, 6E10 ~ 1.5 MW, 1E11 ~ 1 MW

Gain from further-increasing Q is marginal!

Cryogenic power decrease with high Q SRF Nb3Sn cavities

- 650 MHz Nb₃Sn 2 K Q₀ at ~ 20 MV/m lower than Nb (no-doping or N/O doping)
- \sim 20 MV/ m Nb₃Sn 4.2 K cryo efficiency similar to Nb at 2 K, lower than high Q Nb at 2 K
- 650 MHz Nb cavity at 4.2 K $Q_0 \sim$ 2E9. If use cryocooler at 4.2 K for industry application (\sim 10 MV/m), Nb₃Sn is the only choice. COP of cryocooler not efficient for large accelerators.

High-Q, high-gradient SRF application for a green accelerator

ADS Using SRF Cavities

1 GW fission reactor, 15 MW proton beam (1.5 GeV, 10 mA CW), 30 MW for the SRF linac. If using normal conducting cavities, a large part of generated power goes to linac.

 $\mathcal{L}_{\mathcal{A}}$

ERL-FEL: Ideal EUV Light Source

- Energy recovery linac (ERL) based Free Electron Laser (FEL) for high power EUV lithography (proposed by KEK, Japan)
- Many advantages over the current LPP source.

High-efficiency klystrons R&D status for CEPC

Zusheng Zhou

Increasing efficiency by decelerating the used beams at collector

- **O** CPI (USA) has developed multiple models of multi-stages decelerating collector klystrons
- D Many research institutes in Japan, UK and so on has conducted similar efforts.

\Box CEPC will carry out the researches as well

Theoretical studies of efficiency v.s. collection stages for \blacktriangleright normal and high-efficient klystrons

Eco-friendly magnet R&D at IHEP Mei Yang

Annual running time of 8000 hours

Dual-rings magnets enable field tenability in a large range

Develop plasma acceleration technology to improve the efficiency

Dazhang Li

High gradient: $~10-100$ GV/m, $~1000$ times higher than conventional Acc. **High energy conversion rate High repetition rate possibility Focus on PWFA acceleration** Plasma wake field **Driver beam Trailer beam Conventional linac** 1GeV accelerator in hand

CEPC & Test facility for developing Plasma-acceleration at IHEP

Cold C-band acceleration R&D activities and challenges

• The gradient of the 30 GeV linac normal conducting structures

- S-band, 80 MW klystron
	- ◆ 1-1(ESBS), 1 accelerating structure, 22MV/m
	- \rightarrow 1-4 (FAS), 21 sets(6+15), 84 standard accelerating structures, 22MV/m
	- \bullet 1-2(PSPAS), 8 sets, 16 big hole accelerating structures, 22MV/m
	- ↓ 1-2(SAS), 4 sets, 8 accelerating structures, 27MV/m
- C-band, 50 MW klystron
	- ◆ 1.1GeV-30GeV, 1-2(TAS), 235 sets, 470 accelerating structures, 40M / m

Jingru Zhang

Vacuuming the cavity breaks the good frequency distribution

Exploring the inner of a cavity using an endoscope

Solar panels on-top of the roof at HEPS

- Photovoltaic (PV) power generation systems are installed on the roofs of HEPS building complex
- Adopting 465Wp/550Wp monocrystalline silicon photovoltaic modules, the first phase has a total installed capacity of 9,950.92 kWp. The average annual power generation is expected to be 10.31 million kWh, and the equivalent average annual utilization hours will be 10,035.85h.
- Phase I was connected to the grid on 2023.10.30.
- The second phase is planned to lay PV modules on the ground inside the storage ring with an installed capacity of 7314.45kWp

Jinshu Huang

AHP serves to recover the waste heat

- Novel concept to improve the power efficiency, recycle energy, and generate renewable energy are addressed as comprehensive measures for sustainable operation.
- There are many common challenges to achieve a green & high efficiency machine
- Substantial collaborations can provide many benefits