IAS PROGRAM High Energy Physics January 8 – 26, 2024 Conference: January 22 - 25, 2024

IAS Program on High Energy Physics (HEP 2024)

SC Final Focus quadrupoles

M. Koratzinos

23/1/2024

M. Koratzinos

ATLAS Experiment © 2023 CERI

A tale of two projects

CEPC and FCC-ee are the two circular collider future flagship projects with a lot in common and very few differences!

The final focus system of FCC

- Three quadrupoles in a cryostat inside the detector (QC1)
- Two more (QC2) outside the detector
- QC1L1, closest to the IP, is the toughest challenge
 - Distance at tip from the other beam is 66mm
 - Distance at the other tip is 87mm
- There are packaging and integration issues – very little space!

quads	L (m)	s (near)	s (far)	B' @Z(T/m)	B' @tt(T/m)	
QC2L2	1.25	-7.190225	-8.440225	14.714061	62.103023	
QC2L1	1.25	-5.860225	-7.110225	16.568025	41.767626	
QC1L3	1.25	-4.310225	-5.560225	-18.109897	-99.714408	
QC1L2	1.25	-2.980225	-4.230225	-24.629491	-88.924038	
QC1L1	0.7	-2.200225	-2.900225	-43.72333	-96.796669	
QC1R1	0.7	2.200225	2.900225	-43.72333	-96.796669	
QC1R2	1.25	2.980225	4.230225	-30.963853	-97.183137	
QC1R3	1.25	4.310225	5.560225	-15.401024	-82.712171	
QC2R1	1.25	5.860225	7.110225	41.716447	17.331058	
QC2R2	1.25	7.190225	8.440225	2.96821	62.122116	

Z: FCCee_z_575_nosol_5_bb.sad tt: FCCee_t_572_nosol.sad K. Oide 27 Sep 2023

QC1L1

- The quad closest to the IP (and closest to its neighbour)
- Length 700mm
- Strength 100T/m
- Inner diameter of the beam pipe: 30mm
- A CCT prototype was constructed in 2019
 - Length 420mm
 - Aperture 40mm
 - Strength 100T/m
 - Conductor: NbTi (8X0.825mm LHC strand)
 - Temperature: 1.9K (superfluid He)

Final Focus quads in IAS conferences

2016

First piece of hardware of FCC-ee at CERN

M. Koratzinos, HKUST Jockey Club Institute of Advanced Study, 18-21 January 2016

2020

Winding process

M. Koratzinos, IAS 2020

Crosstalk compensation QC1L1 quadrupole, length = 720mm distance at tip: 66mm,

52

2019

2021

Results - centre

Progress has been reported every year: interesting to see the project from the concept stage to fruition

How to eliminate crosstalk?

- Especially for QC1L1, there is very little space between the e+ and e- quadrupoles.
- One possible strategy would be to use iron to shield one quad from the other
- Is this good enough?
- [In this talk I will be talking about "units". A unit is a multipole that has a magnitude of 1/10,000 of the main multipole (quadrupole in our case)
- The briefing we were given by the Optics people is that we should limit ourselves to imperfections of less than 1 unit.
- These multipoles are measured at a specific reference radius, traditionally taken to be 2/3 of the aperture. FCC uses 10mm CEPC 7.5mm]

Single cosine-theta quad

Harmonics Table Main Harmonics Skew harmonics Axial Field

@7.5mm referenceradius!(FCC-ee referenceradius: 10mm)

Order	An [T.m]	an	Normalized Shape	Order	Bn [T.m]	bn	Normalized Shape
A1	-9.82e-07	-0.01		B1	-6.16e-06	-0.08	
A2	6.67e-04	8.90		B2	7.50e-01	10000.00	
A3	7.85e-07	0.01		B3	6.17e-06	0.08	
A4	1.53e-08	0.00		B4	1.91e-05	0.26	
A5	8.77e-07	0.01		B5	-6.17e-06	-0.08	
A6	5.37e-06	0.07		B6	-1.61e-03	-21.52	
A7	6.43e-07	0.01		В7	6.17e-06	0.08	
A8	1.48e-08	0.00		B8	1.48e-05	0.20	
A9	1.82e-07	0.00		B9	-6.17e-06	-0.08	
A10	-4.32e-08	-0.00		B10	-3 86e-05	-0.51	

Double quad no iron

Harmoni	cs Table Main H	larmonics Ske	w harmonics Axial Field				
harmonic	s given at a refere	ence radius of: 7	7.500 [mm]				
Order	An [T.m]	an	Normalized Shape	Order	Bn [T.m]	bn	Normalized Shape
A1	-8.47e-02	-1090.58		B1	1.15e-04	1.49	\bigwedge
A2	7.13e-04	9.18		B2	7.76e-01	10000.00	
A3	5.52e-03	71.13		B3	-5.07e-06	-0.07	$\overline{}$
A4	-2.44e-06	-0.03		B4	-9.43e-04	-12.15	
A5	-1.50e-04	-1.93		B5	-5.74e-06	-0.07	
A6	5.53e-06	0.07		B6	-1.59e-03	-20.52	
A7	3.58e-06	0.05		Β7	6.19e-06	0.08	
A8	-5.55e-08	-0.00		B8	1.33e-05	0.17	
A9	4.60e-07	0.01		B9	-6.21e-06	-0.08	
A10	2.35e-08	o.oo M. Korat	zinos	B10	-3.98e-05	-0.51	

Double quad plus iron

Harmonics Table Main Harmonics Skew harmonics Axial Field

harmonic	s given at a refere	ence radius of: 🦷	′.500 [mm]				
Order	An [T.m]	an	Normalized Shape	Order	Bn [T.m]	bn	Normalized Shape
A1	-1.52e-02	-154.02	$\overline{}$	B1	3.70e-05	0.37	
A2	7.19e-04	7.27		B2	9.90e-01	10000.00	
A3	1.60e-03	16.15		B3	-1.54e-05	-0.16	
A4	-7.56e-06	-0.08		B4	-2.17e-04	-2.19	
A5	-4.89e-05	-0.49	- Martin -	B5	-6.06e-06	-0.06	
A6	5.46e-06	0.06		B6	-1.56e-03	-15.76	
A7	1.38e-06	0.01		B7	6.32e-06	0.06	
A8	2.32e-08	0.00		B8	1.30e-05	0.13	
A9	8.31e-07	0.01		B9	-6.24e-06	-0.06	
A10	-5.44e-08	-0.00 M. Korata	zinos	B10	-3.99e-05	-0.40	

Double quad with iron, half strength

Non-linearity from half to full strength: A3: 2 units

Harmoni	cs Table Main H	Harmonics Skev	w harmonics Axial Field				
harmonic	s given at a refere	ence radius of: 7	.500 [mm]				
Order	An [T.m]	an	Normalized Shape	Order	Bn [T.m]	bn	Normalized Shape
A1	-7.35e-03	-142.50	The	B1	3.08e-05	0.60	
A2	3.51e-04	6.81		B2	5.16e-01	10000.00	
A3	7.12e-04	13.80	Jun	B3	-1.52e-05	-0.29	
A4	-5.92e-08	-0.00	\neg	B4	-9.94e-05	-1.93	
A5	-8.91e-07	-0.02		B5	-2.97e-06	-0.06	
A6	2.76e-06	0.05		B6	-8.34e-04	-16.16	
A7	-5.83e-07	-0.01		B7	3.15e-06	0.06	
A8	-9.80e-09	-0.00		B8	6.50e-06	0.13	
A9	4.33e-07	0.01		B9	-3.11e-06	-0.06	
A10	-1.66e-08	-0.00 M. Koratz	inos,	B10	-1.99e-05	-0.39	

(Double quad, iron, 10mm reference radius)

Main Harmonics Skew harmonics

Harmonics Table

Multipoles larger than 1 unit: A3: 22 units A5: 1 unit B4: 4 units

harmonic							
Order	An [T.m]	an	Normalized Shape	Order	Bn [T.m]	bn	Normalized Shape
A1	-1.52e-02	-115.51	$\overline{}$	B1	3.71e-05	0.28	\bigwedge
A2	9.59e-04	7.27		B2	1.32e+00	10000.00	
A3	2.84e-03	21.53		B3	-3.23e-05	-0.24	
A4	-1.80e-05	-0.14		B4	-5.54e-04	-4.20	
A5	-1.57e-04	-1.19	M	B5	-5.71e-06	-0.04	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A6	2.32e-05	0.18		B6	-6.50e-03	-49.23	
A7	6.31e-06	0.05		Β7	6.57e-06	0.05	
A8	-1.34e-07	-0.00		B8	5.89e-06	0.04	
A9	1.86e-06	0.01		В9	-6.26e-06	-0.05	
A10	-2.71e-07	-0.00 M. Korat	zinos	B10	-3.78e-04	-2.87	

Axial Field

Iron vs non-iron

- Using iron to shield the two apertures gives significant field imperfections (larger than 10 units @7.5mm)
- Non-linearities are ~2 units
- Using a different method to correct for the fringe fields of adjacent magnets seems preferable
- This is the approach of FCC.
- We are using a CCT quadrupole which has offending multipoles removed by design.
- This is an iron-free design with the added benefit of having no non-linearities.

The FCC-ee CDR solution

- Use CCT technology and NbTi conductor
- CCT was used as it can eliminate crosstalk
- NbTi was used as it was proven technology at the time
- To get the 100T/m gradient needed, we need to operate at 1.9K (superfluid helium)

The FF quad prototype

- A final focus quad prototype was built in 2019 and tested at warm.
- The prototype was impregnated with wax at PSI (August 2023)
- During October 2023 it was tested at CERN's SM18 facility at 1.9K and 4.5K

Design

- Was done in-house using the FIELD suite of programs
- Mechanical design done in Autodesk Inventor

Manufacturing

 Was done at the main CERN workshop. Material: Aluminium 6082-T6, hard-anodized

winding

Done inhouse using standard LHC 0.825 NbTi strand

Impregnation

- Wax was chosen for its (expected) performance during quench training
- Wax contracts by 15% when it crystalizes creating voids if no measure is taken
- Voids can be avoided if crystallization occurs in a controlled manner (inner to outer and bottom to top)
- Using the experience gathered by different experts on wax impregnation, a new method was tried: The magnet was impregnated and cooled in a controlled manner at PSI

The test at SM18

- Cryostat supporting 1.9K superfluid helium
- Training campaign
- Measurement of splice resistance
- Measurement of quenchback
- Measurement of RRR

SM18 Test results Oct 27-31 - Training

No training quenches were seen up to short sample limit No degradation was seen for quenches at short sample limit

Gradients:

Quench current (A)

- Nominal: 100T/m
- Maximum at 1.9K: 130T/m
- Maximum at 4.5T: 96T/m

1.9 K: reached 991 A, peak field on conductor is 3.65 T 4.5 K: reached 738 A, peak field on conductor is 2.71 T

Comparison to similar projects

Figure 57. Training performance of D2 corrector first prototype.

Figure 56. Training performance of D2 corrector first prototype.

Chinese-made MCBRD HiLumi dipole corrector

M. Koratzinos

Quench analysis at short sample limit, 1.9 K at 991 A.

Quench integral and Quenchback

FCC-ee final focus Quad proto MK I

Quench integral

Effects to take into account:

- Quench back starts between 400 and 500 A with 50 mOhm crowbar + 75 mOhm EE.
- Quench back starts between 500 and 600 A for 75 mOhm EE.
- The contribution of the former becomes more important at higher dI/dt. This could explain why the curve is flat above 500 A.

Field quality – measurements at warm

Mysterious 'environment' component extracted after repeating warm measurement with a 42 degree tilt of the magnet

Centre: multipoles

Field quality - cold

- Work under way, but already <1unit for all multipoles
- We did not do the same trick during cold measurements
- The 'warm' measurements below come from the unrotated data

Next steps

- Last remaining question is the radiation resistance of wax.
- The plan would be to irradiate and re-measure.
- I have requested for this irradiation to be done at Dafne in Frascati.

Upgrade to HTS

- Changing the technology from NbTi to HTS would mean that we can operate at 30K instead of 2K.
- BUT, HTS comes in form of tapes, not trivial to design a quadrupole with crosstalk compensation.
- Earlier attempts resulted in large B6 (dodecapole) component which needed a dedicated corrector...
- I am happy to report that I think I have solved all these technical problems.

The new HTS design

View from the top

M. Koratzinos

Detail at 2200mm from the IP

Crosstalk compensation e+ beam

V			ŀ	larmonics Calculation	on - Harmonio	s electron beam					
< Export	t										
Harmoni	cs Table Main H	Harmonics Ske	w harmonics	Axial Field							
harmonics given at a reference radius of: 10.000 [mm]											
Order	An [T.m]	an	Normalized Shap	be	Order	Bn [T.m]	bn	Normalized Shape			
A1	-3.39e-05	-0.49			B1	3.44e-05	0.50				
A2	4.38e-05	0.63			B2	6.95e-01	10000.00				
A3	-4.47e-05	-0.64	\neg	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	B3	-5.26e-06	-0.08				
A4	2.52e-05	0.36	Λ		Β4	-4.56e-05	-0.66				
A5	3.44e-06	0.05			B5	-9.05e-06	-0.13				
A6	-1.07e-06	-0.02			B6	3.89e-05	0.56				
Α7	2.25e-06	0.03			Β7	-4.74e-05	-0.68				
A8	4.80e-07	0.01			B8	-2.13e-05	-0.31				
A9	1.33e-06	0.02			B9	-6.11e-07	-0.01 M. Koratzine	0S			
110	2 70 - 00	0.00			D10	0.00-00	0.10				

All multipoles below 10^{-4} . I stopped the optimization when I reached this level, but further improvement is possible and easy, up to the manufacturing tolerances (10^{-5} ??).

Crosstalk compensation e- beam

▼			Harmonics Calculation	- Harmonic	s positron beam					
< Export	t									
Harmonics Table Main Harmonics Skew harmonics Axial Field										
harmonics given at a reference radius of: 10.000 [mm]										
Order	An [T.m]	an	Normalized Shape	Order	Bn [T.m]	bn	Normalized Shape			
A1	-3.39e-05	-0.49		B1	-3.44e-05	-0.50	$\checkmark \checkmark \checkmark$			
A2	-4.38e-05	-0.63		B2	6.95e-01	10000.00				
A3	-4.47e-05	-0.64		B3	5.26e-06	0.08	$- \sqrt{-}$			
A4	-2.52e-05	-0.36		В4	-4.56e-05	-0.66				
A5	3.44e-06	0.05		B5	9.05e-06	0.13				
A6	1.07e-06	0.02		B6	3.89e-05	0.56				
A7	2.25e-06	0.03	V	B7	4.74e-05	0.68				
A8	-4.80e-07	-0.01		B8	-2.13e-05	-0.31	hanne			
A9	1.33e-06	0.02		B9	6.11e-07	0.01				
A10	-3.78e-08	-0.00		B10	-8.33e-06	-0.12				

(System is symmetric)

Field gradient

Magnetic field for 100T/m gradient

Critical current

Temperature margin

Running at 1.9K

- Number of turns reduced to 4 (from 10) and current increased to 1000A
- Critical current fraction ~60%

Parasitic currents

- A potential problem of HTS tapes is parasitic currents when running well below the critical current that could introduce multipole errors
- The real answer of how important these are will be given when we measure the HTS arc sextupole, currently under manufacture for the FCCee-HTS4 project.
- Simulations show that the problem for the HTS4 sextupole is well below 1 unit of 10⁻⁴
- Need to measure!

Magnetic and mechanical design of single aperture prototype

Conclusions

- The first FCC-ee FF quad prototype was tested at cold with excellent results.
- The choice of CCT iron-free technology seems justified.
- Making the FF quads of FCC using HTS tape conductors now appears possible.
- This will give sizable advantages and a proposal to build a prototype has been put forward.

M. Koratzinos

GO, FCC!

