Overview of ATLAS and CMS results at the LHC

IAS 2024 conference

Dominik Duda

On behalf of the the ATLAS and CMS collaborations

22nd January 2024

Introduction

- ATLAS and CMS have a broad and ambitious physics programme
 - Determine fundamental parameters of the SM with high precision
 - Measure rare SM processes for the first time
 - Direct and indirect searches for new physics
 - Probe for new particles and interactions at the multiple-TeV scale
- Had many interesting physics results in recent years at the LHC
 - Presenting a selection of ATLAS & CMS results (including many personal favorites)

Lots of pp collisions at the LHC

ATLAS/CMS physics programme

- Precision measurements of SM processes:
 - Higgs boson
 - Top quark
 - Vector bosons
 - QCD physics
 - B Physics and Quarkonia
- Search for rare SM processes (VVV, 4tops)
- Searches for new physics:
 - Dark matter
 - SUSY
 - Long-lived particles
 - Rare or exotic decays of SM particles
 - Extended gauge sector
 - Extended Higgs sector
- Heavy ion physics (not covered in this presentation)

Presenting a selection of recent results from the ATLAS and CMS collaboration. Additional results can be found via the <u>ATLAS</u> and <u>CMS</u> publication pages

Detector performance

- Require **excellent understanding of the detector performance and high-performant object ID** to carry out high-precision measurements and BSM searches
 - A lot of effort is put into improving understanding of detector and development of reconstruction/identification algorithms

New ATLAS luminosity measurements

 Determined with a precision of 0.83% for total Run 2 dataset [*Eur. Phys. J. C* 83 (2023) 10, 982]

Higgs boson property measurements

- Couplings
- Mass
- Width
- Spin/CP

Dedicated presentation by Chen Zhou

Higgs boson production modes

Higgs boson decay modes

Almost all major decay modes of the Total Uncert Higgs boson are studied by ATLAS/CMS bb WW V gg 10⁻¹ + ττ Higgs BR. $\kappa_{\rm f}$ $\kappa_{
m V}$ cc Η N V γ, Z 10^{-3} Zγ t,b $\kappa_{t,b}$ μμ t,b Η 10 t,b \sim

CERN Yellow Report 4

Higgs boson couplings

Nature 607 (2022) 60-68

Higgs boson couplings

 $\sigma \times B$ normalized to SM prediction

Nature 607, 52 (2022)

First evidence for the Higgs boson decay to a Z boson and a photon

Η

- Obtain statistical significance of 3.4σ, while a significance of 1.6σ was expected
- \circ Signal yield is 2.2 ± 0.7 times the SM prediction

Agrees with the expectation within 1.9σ

Search for boosted Higgs boson decays to charm quark pairs

- Higgs decay to charm quarks was long considered to be inaccessible at the LHC.
- Recent developments by CMS give us hope to find this decay mode after all.

 - **ParticleNet algorithm** exploits information of charged particle tracks

Merged

Searches for Higgs boson decays to charm quark pairs

 Impressive demonstration that its always worth to invest time in the development of novel reconstruction techniques

95% CL limit on $\mu_{_{VH(H \ensuremath{\rightarrow} \ensuremath{c\overline{c}})}}$

Phys. Rev. Lett. 131 (2023) 061801

Searches for Higgs boson pair production

- Higgs boson pair production is sensitive to self-interaction strength λ
- Define self-interaction strength modifier:

Pair production cross section is three orders of magnitude smaller than the single Higgs boson cross section.

gluon fusion production

vector boson fusion production

Searches for Higgs boson pair production

- New/updated HH results by ATLAS:
 - Multi-lepton (WW, ZZ): 9.7obs (16.2exp) [arXiv:2310.11286]
 - **bbγγ:** 4.0obs (5.0exp) [arXiv:2310.12301]
 - ο **bbττ:** 5.9obs (3.1exp) [ATLAS-CONF-2023-071]

Run 2 constraints are significantly better than what was predicted 10 years ago

Constraints on Higgs boson self-interaction strength

New/updated HH results by ATLAS:

- **bbγγ:** -1.4 (-2.8) < κ_λ < 6.9 (7.8) [arXiv:2310.12301] 0
- **bb**ττ: -3.2 (-2.5) < κ_λ < 9.1 (9.2) [ATLAS-CONF-2023-071] 0
- **Multi-lepton** (WW, ZZ): $-6.2 (-8.1) < \kappa_{\lambda} < 13.3 (15.5) [arXiv:2310.11286]$ Ο

17

CMS observed: -1.24 < κ_λ < 6.49

Higgs boson mass measurement

Latest combination of CMS results from H→γγ and H→ZZ*→4ℓ measurements (2016 + Run 1):

125.38 \pm 0.14 (\pm 0.11) GeV

Phys. Lett. B 805 (2020) 135425

Most precise Higgs boson mass measurement to date
 Thanks to outstanding work on μ/e/γ energy calibrations

Phys. Rev. Lett. 131 (2023) 251802 Eur. Phys. J. C 83 (2023) 686 arXiv:2309.05471

Higgs boson width

- ATLAS and CMS have both found evidence for off-shell production
- Assuming identical coupling between on-shell and off-shell productions:

$$\Gamma(H) = (\mu_{off-shell}/\mu_{on-shell}) \Gamma_{SM}(H)$$

ATLAS:
$$\Gamma_H = 4.6^{+2.6}_{-2.5} \text{ MeV}$$

CMS: $\Gamma_H = 3.2^{+2.4}_{-1.7} \,\mathrm{MeV}$

Nat. Phys. 18 (2022) 1329

Spin/CP

- Studies of Higgs boson decay products have strongly hinted that spin/CP of the Higgs boson is J^P = 0⁺
 - Alternative hypotheses have been excluded at more than 99.9% C.L.

Eur. Phys. J. C 75 (2015) 476

Spin/CP

- Run 2 analyses focus on production vertices
 - Study particles produced in association to the Higgs boson (VBF/VH modes)
 - Probe Optimal Observable:

$$OO = 2\text{Re}(\mathscr{M}_{\text{SM}}^* \mathscr{M}_{\text{CP-odd}}) / |\mathscr{M}_{\text{SM}}|^2$$

• Set constraints on dim-6 operators modulating the HVV coupling

	Decay channel	Expected 95% CL:	Observed 95% CL:
$c_{H\tilde{W}}$	$H \to \gamma \gamma$	[-0.94, 0.94]	[-0.53, 1.02]
	$H\to ZZ^*\to \ell^\pm\ell^\mp\ell^\pm\ell^\mp$	[-1.26, 1.28]	[-0.81, 1.54]

Phys. Rev. Lett. 131 (2023) 6, 061802

arXiv:2304.09612

Some more highlights

- Differential cross section measurements in VBF H→ WW*
- High-momentum Higgs production via VH → qqbb
 - Observed (expected) significance is 1.7σ (1.2 σ)

- Measurement of VBF production in H→ bb
- Measurements of Higgs properties in kinematic bins in VH(→ bb)

22

Top quark property measurements

- Production cross section measurements
- Rare processes
- Mass measurements
- Quantum entanglement

Top Quark Production Cross Section Measurements

Status: November 2023

- Top quark pair production cross section measurements
 - Reach precision of around 1.8% at 13 TeV
 - Reach precision of around 3.2% at 13.6 TeV (already systematics limited)

ATL-PHYS-PUB-2023-038

Four top quark production

- ATLAS/CMS both recently observed the simultaneous production of 4 top quarks
- Particularly interesting since the process is very sensitive to BSM contributions:
 - Gluino pair production (SUSY)
 - Associated production of a heavy Higgs boson (2HDM)
- Measured Cross sections:

ATLAS: $22.5^{+6.6}_{-5.5}$ fb CMS: $17.7^{+4.4}_{-4.0}$ fb

• Constraining EFT parameters

Combination of top quark mass measurements

Statistical combination of fifteen top quark mass measurements with LHC Run-1 datasets collected in 2011 and 2012

m₊ = 172.52 ± 0.14 (stat) ± 0.30 (syst) GeV

Top quark mass is determined via this combination with a relative uncertainty below 2 permille, which is an outstanding achievement

Observation of quantum entanglement in top-quark pairs

- Top quark lifetime is shorter than hadronisation time
 - Spin information are transferred to decay products of the top quark
 - Angular correlation of the final state particles
- Spin entanglement is detected from the measurement of

 $\mathsf{D} = -3 \cdot \langle \cos \varphi \rangle$

where φ is the angle between the charged leptons in their parent top- and antitop rest frame

• Observe:

 $D = -0.547 \pm 0.002 \text{ (stat.)} \pm 0.021 \text{ (syst.)}$

The existence of an entangled state is demonstrated for D < -1/3

Particularly sensitive to the entangled state

Search for BSM physics in top quark production with additional leptons

- Probe BSM effects in various classes of events
 - Lepton & jet & b-jet multiplicities
- Set strong constraints on relevant dimension-six EFT operators
 - \circ ~ Study p_{τ} spectra of leptons, jets and Z bosons

Other WCs profiled (2σ) 138 fb⁻¹ (13 TeV) Other WCs profiled (10) Other WCs fixed to SM (2σ) CMS $c_t^{T(\ell)}$ $c_{t}^{S(\ell)}$ $c_{\rm te}^{\,(\ell\,)}$ $c_{t\ell}^{(\ell)}$ $c_{\text{Qe}}^{(l)}$ $c_{\mathrm{Q}\ell}^{-(\ell)}$ $c_{Q\ell}^{3(\ell)}$ $c_{ot} \div 2$ Coth $c_{\omega Q}^{3}$ CbW $C_{tG} \times 5$ $c_{\alpha\Omega}^{-} \div 2$ CtZ c_{tW} CQt c_{Ot}^8 c_{00}^1 c_{tq}^8 c_{Qa}^{18} $c_{tq}^1 \times 5$ $c_{Qa}^{11} \times 5$ c 38 × 5 $c_{-}^{31} \times 5$ -6 Wilson coefficient / Λ^2 [TeV

28

Vector boson property measurements

- W and Z boson cross section measurements
- W boson mass measurements
- Differential Cross section measurements
- Z boson polarisation studies
- Di-boson cross section measurements
- Observation of tri-boson production

Production cross section measurements

state-of-the-art cross section calculations Updated meas

Updated measurements of the W/Z cross sections by CMS can be found \underline{here} and \underline{here}

Improved W boson mass measurement

Newest measurement yields: m_w = 80360 ± 5(stat.) ± 15(syst.) MeV (consistent with the SM)

W and Z boson $p_{\scriptscriptstyle T}$ measurements

- Measurements of the W/Z boson production are a sensitive test of QCD
 - \circ $\ensuremath{\, p_{\tau}}\xspace$ arises from higher order corrections to the LO Drell–Yan processes

- Precise measurements of unfolded p_T spectra allow to constrain various modelling effects (PDF, radiation effects, ..)
- Studies are crucial for refined measurements of the W boson mass

Measurement of the Z boson invisible width

Probe events with jets and missing transverse momentum

In agreement with the LEP results and the SM prediction (based on three neutrino generations)

CMS results: Phys. Lett. B 842 (2023) 137563 ATLAS results: arXiv:2312.02789

Di-boson production

CMS Preliminary

34

Evidence of pair production of longitudinally polarised Z bosons

- Diboson polarisation measurements, provide unique sensitivity to BSM physics
- Use BDT (based on lepton angles) to separate $Z_L Z_L$, $Z_T Z_L$, and $Z_T Z_T$

Measured with a significance of 4.3 standard deviations

Observations of tri-boson production

Observations of tri-boson production

WWy observation at 5.6σ (4.7σ exp)

WWW observation at 8.0σ (5.4 σ exp)

Measurement of EW W[±]W[±]jj production

• Fiducial cross section:

- **ATLAS:** 2.92 ± 0.22 (stat.) ± 0.19 (syst.) fb
- **CMS:** 3.98 ± 0.37 (stat.) ± 0.25 (syst.) fb

Searches for New Physics

- Resonance searches
- Exotic decays of SM particles
- Searches for SUSY and other exotic particles

Searches for new resonances:

Events

- Focus: Searches for a (heavy) resonance X decaying into X₁ and X₂ (with X₁/X₂ = γ, Z, W, H, q, ℓ, BSM particles)
 - Searches are performed for different production modes
 - Targeting diverse sets of final states:
 - Multi-lepton
 - Di-photon
 - Di-tau
 - Lepton + jets
 - Multi-jets
 - Perform (quasi) model-independent searches
 for a bump in a smoothly falling mass spectrum
 - Interpretations in generic frameworks:
 - Extended Higgs sector:
 - Two Higgs Doublet Model (2HDM)
 - Other generic frameworks:
 - Heavy Vector Triplet (HVT) models
 - Extra-dimensional models

Di-lepton and di-jet resonance searches

- ATLAS/CMS also have a wide range of searches for qq, *ll* and *lv* resonances:
 - $\circ \quad e^+e^-, \mu^+\mu^-, \tau^+\tau^-, e^\pm v, \mu^\pm v, and \tau^\pm v$
 - q_lq_l, bb, tb, tt

Di-boson resonance searches: ZH

Di-boson resonance searches: WZ

Search for WZ resonance Signature: Ο MET, 1lep + MET, 2lep 2 small-R jets or 1 large-R jet Predicted by: Ο **HVT Extradimensional models** 137 fb⁻¹ (13 TeV) σ(VBF W') × B(W' → WZ) (pb) $σ_{-1}$ 0⁻¹ \longrightarrow W' \rightarrow WZ (HVT model C, c.=3) 95% CL upper limits Observed - Median expected 68% expected 95% expected 10^{-4} 1000 1500 2000 2500 3000 3500 4000 4500

Phys. Rev. D 105 (2022) 032008 m_w (GeV)

HVT model C: $g_F = 0$, $g_H = 1$

*small-radius (large-radius) jets are used in resolved (boosted) events

[†]with $\ell = \mu$, e

Summary of CMS di-boson searches can be found <u>here</u>

44

ATL-PHYS-PUB-2023-007

Combination of Resonance Searches

- Combine searches for diboson, di-quark, and di-lepton resonances:
 - Include large number of individual channels:
 - Fully leptonic
 - semi-leptonic
 - fully hadronic

q

 g_F

• Exploit complementarity of different channels to improve constraints

 W^{\pm}, Z, h

 W^{\mp}, Z, h

 g_V, g_H

 By now, better than EWK precision constraints for masses ≤ 5 TeV

Low-mass di-photon resonance searches

 $\sigma_{\rm H} \times {\rm B}({\rm H} \rightarrow \gamma \gamma)_{95\% {
m CL}}$ [fb]

160

140

120

100

80

AS Preliminarv

√s = 13 TeV. 140 fb⁻¹

 $H \rightarrow \gamma \gamma$

— Observed CL, limit

---- Expected CL_s limit

Expected $\pm 1 \sigma$

Expected $\pm 2 \sigma$

ATLAS-CONF-2023-035

95

100

m_u [GeV]

- Search for a SM-like Higgs boson in the mass range between 70 and 110 GeV
 - Allowed by 2HDMs, N2HDMs, and other extended Higgs Ο sector models

Cascade decays

- Search for resonances decaying to triple W-boson final states:
 - Search for cascade decays leading to merged ℓvqqqq (ℓ = µ, e) final states
 - Study events with 1 or 2 large-R jets

Searches for additional Higgs bosons

Searches for additional Higgs bosons

Searches for double charged Higgs bosons

- Search for W[±]W[±] resonances produced via VBF
 - Signature: Ο
 - MET, 2lep (same-sign)
 - 2 small-R jets in the forward direction
 - Predicted by: Ο
 - Georgi-Machacek model
 - And other Higgs triplet models

Lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the eµ, eτ, and µτ final states

- Predicted by:
 - Flavour-violating 2HDMs
- Particularly interesting due to flavour anomalies observed by e.g. <u>g - 2</u>

Searches for invisible decays of the Higgs boson

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits Status: March 2023

Mass reach of BSM searches by ATLAS

	Model	ℓ, γ	Jets†	E_{τ}^{miss}	∫£ dt[fb		it	J2 00 = (0	100)10	Reference
Extra dimen.	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multiget RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ 2 \gamma \\ \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4 j -2 j $\ge 3 j$ -2 j $\ge 1 b, \ge 1 J/2$ $\ge 2 b, \ge 3 j$	Yes - - - ?j Yes Yes	139 36.7 139 3.6 139 36.1 36.1 36.1	М _D M5 Min Grkr mass Grkr mass grkr mass KK mass KK mass	4.5 2.3 TeV 3.8 TeV 1.8 TeV	11.2 Te 8.6 TeV 9.4 TeV 9.55 TeV TeV	$ \begin{array}{l} V & n=2 \\ n=3 \ \text{HLZ NLO} \\ n=6 \\ n=6, \ M_D=3 \ \text{TeV, rot BH} \\ k/M_{FI}=0.1 \\ k/M_{FI}=1.0 \\ f/m=15\% \\ \text{Ther}(1,1), \ \mathcal{B}(A^{(1,1)} \to tt)=1 \end{array} $	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to t \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to \psi \\ \text{HVT } W' \to WZ \text{ model B} \\ \text{HVT } W' \to WZ \to \ell\nu \ell'\ell' \text{ model } \\ \text{HVT } Z' \to WW \text{ model B} \\ \text{LRSM } W_R \to \mu M_R \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ 0 - 2 \ e, \mu \\ el \ C \ 3 \ e, \mu \\ 1 \ e, \mu \\ 2 \ \mu \end{array}$	- 2 b ≥1 b, ≥2 J - 2 j/1 J 2 j/1 J 2 j/1 J 2 j/1 J 1 J	- Yes Yes Yes Yes Yes Yes	139 36.1 139 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass 340 GeV Z' mass We mass	5. 2.42 TeV 2.1 TeV 4.1 Te 4.4 T 4.3 T 3.9 Te 5.	1 TeV 6.0 TeV 0 TeV 1 TeV eV eV eV 0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_F = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.03299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 2207.03925 2004.14636 1904.12679
CI	Clqqqq Clℓℓqq Cleebs Clµµbs Cltttt	2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ	1.8 TeV 2.0 TeV 2.57 TeV		$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^- \\ \textbf{35.8 TeV} \\ \textbf{g}_* = 1 \\ \textbf{g}_* = 1 \\ \textbf{C}_{4t} = 4\pi \end{array} \qquad $	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac D Pseudo-scalar med. 2HDM+a	- 0 e, μ, τ, γ M) 0 e, μ multi-channe	2 j 1 - 4 j 2 b	- Yes Yes	139 139 139 139	m _{med} m _{med} 376 GeV m _{z'}	3.8 TeV 3.0 TeV 800 GeV	•	$\begin{array}{l} g_q \!=\! 0.25, g_{\chi} \!=\! 1, m(\chi) \!=\! 10 {\rm TeV} \\ g_q \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 1 {\rm GeV} \\ \tan \beta \!=\! 1, g_Z \!=\! 0.8, m(\chi) \!=\! 100 {\rm GeV} \\ \tan \beta \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 10 {\rm GeV} \end{array}$	ATL-PHYS-PUB-2022-036 2102.10874 2108.13391 ATLAS-CONF-2021-036
ΓG	Scalar LQ 1 st gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \ \tau \\ 0 \ e, \mu, \geq 1 \ \tau \\ \text{multi-channe} \\ 2 \ e, \mu, \tau \end{array}$	$ \begin{array}{c} \geq 2j \\ \geq 2j \\ 2b \\ \geq 2j, \geq 2b \\ r \geq 1j, \geq 1b \\ 0-2j, 2b \\ 0-2j, 2b \\ \geq 1j, \geq 1b \\ \geq 1b \end{array} $	Yes Yes Yes Yes Yes Yes Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ ^a mass	1.8 TeV 1.7 TeV 1.49 TeV 1.24 TeV 1.23 TeV 1.25 TeV 1.26 TeV 2.0 TeV 1.95 TeV		$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LO}_3^\circ \to \mathrm{br})=1\\ \mathcal{B}(\mathrm{LO}_3^\circ \to \mathrm{tr})=1\\ \mathcal{B}(\mathrm{LO}_3^\circ \to \mathrm{tr})=1\\ \mathcal{B}(\mathrm{LO}_3^\circ \to \mathrm{tr})=1\\ \mathcal{B}(\tilde{U}_1\to \mathrm{tr})=1\\ \mathcal{B}(\tilde{U}_1\to \mathrm{tr})=1, \mathrm{YM} \ \mathrm{coupl}.\\ \mathcal{B}(\mathrm{LO}_3^\circ \to \mathrm{br})=1, \mathrm{YM} \ \mathrm{coupl}. \end{array}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-052 2303.01294
Vector-like fermions	$ \begin{array}{l} VLQ \ TT \to Zt + X \\ VLQ \ BB \to Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ J_{5/3} \to Wt + X \\ VLQ \ T \to Ht/Zt \\ VLQ \ V \to Wb \\ VLQ \ V \to Hb \\ VLL \ \tau' \to Z\tau/H\tau \end{array} $	$\begin{array}{c} 2e/2\mu/\geq 3e,\mu\\ \text{multi-channe}\\ 2(\text{SS})/\geq 3e,\mu\\ 1e,\mu\\ 1e,\mu\\ 0e,\mu\\ \text{multi-channe} \end{array}$	$\begin{array}{ll} \mu \geq 1 \ b, \geq 1 \ j \\ \downarrow \\ \downarrow \\ \downarrow \\ \geq 1 \ b, \geq 1 \ j \\ \geq 1 \ b, \geq 3 \ j \\ \geq 1 \ b, \geq 1 \ j \\ \geq 2 \ b, \geq 1 \ j, \geq 1 \\ \downarrow \\ \geq 2 \ b, \geq 1 \ j \\ \geq 1 \ j \end{array}$	- Yes Yes IJ - Yes	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass r' mass	1.46 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV 898 GeV		$\begin{array}{l} {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \\ {\rm SU(2) \ singlet, \ } \kappa_T = 0.5 \\ {\rm SU(2) \ singlet, \ } \kappa_T = 0.5 \\ {\rm SU(2) \ oublet, \ } \kappa_B = 0.3 \\ {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \end{array}$	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 2303.05441
Exctd ferm.	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	- 1 γ - 2 τ	2j 1j 1b,1j ≥2j		139 36.7 139 139	q * mass q * mass b * mass τ* mass	5 3.2 TeV 4.6	6.7 TeV .3 TeV TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	2,3,4 e, μ 2 μ 2,3,4 e, μ (SS 2,3,4 e, μ (SS - - - - - - - - - - - - -	≥2 j 2 j 6) various 6) – – – √s = 13 full d	Yes - Yes - - - 3 TeV ata	139 36.1 139 139 139 34.4	N ^e mass N _H mass H ^{±±} mass unlis-charged particle mass monopole mass 10 ⁻¹	910 GeV 3.2 TeV 1.08 TeV 2.37 TeV 1		$m(W_R) = 4.1$ TeV, $g_L = g_R$ DY production DY production DY production, $ g = 5e$ DY production, $ g = 1g_D$, spin 1/2	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-CONF-2022-034 1905.10130

ATL-PHYS-PUB-2023-008 *Only a

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

ATLAS Preliminary

 $\int f dt = (3.6 - 139) \, \text{fb}^{-1}$

LAJ Preiminary

Mass reach of BSM searches by CMS

Mass Scale [TeV]

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Other Highlights

Measurement of the strong coupling constant

- Exploit recoil of Z bosons
 - i.e. study the transverse-momentum distribution of Z bosons
 - $\circ \qquad \text{Shape of Z boson pT distribution} \\ \text{depends on } \alpha_s \text{ value}$
- Most precise experimental determination of α_s(m_z) so far

arXiv:2309.12986

Observation of an excess of di-charmonium events

GeV

50

ATLAS

 $J/\psi + \psi(2S)$

 $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$

Sig. + Bkg.

----- Signal

🔶 Data

Background

- Search for Tetra-quarks by probing for:
 - $(TQ) \rightarrow J/\psi + J/\psi \rightarrow 4\mu$ 0
 - $(TQ) \rightarrow J/\psi + \psi(2S) \rightarrow 4\mu$ Ο
- Found peaks around 6.9 GeV, consistent with the LHCb observed X(6900)

Flavour-Physics (rare decays)

- Test of lepton flavor universality in $B^{\pm} \to K^{\pm} \mu^{+} \mu^{-}$ and $B^{\pm} \to K^{\pm} e^{+} e^{-}$ decays
- Ratio of branching fractions is probed for deviations from the SM predictions $R(K)_{\text{theory}}(q^2) = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)(q^2)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)(q^2)}$

Phys. Lett. B 842 (2023) 137955

- Rare B meson decays provide an excellent and complementary environment to search for BSM effects
- Measurement of $B(B_s \rightarrow \mu^+ \mu^-)$ is the most precise single measurement to date
- No evidence for $B(B^0 \rightarrow \mu^+\mu^-)$ yet

Concluding remarks

Concluding remarks

- ATLAS and CMS have exciting physics programmes
 - **Precision measurements** in many areas
 - Higgs boson, top quark and vector boson properties
 - Flavour-Physics
 - Rare processes: quartic gauge boson couplings, 4tops
 - **New physics searches** ranging up to the multi-TeV range
 - Extended Higgs/gauge sector
 - Dark matter/ long-lived particles
 - Indirect constraints from EFT fits
- Ongoing work on improved reconstruction/identification techniques promises significant gain in sensitivity (for both precision measurements and searches)
- Run 3 will double the size of the ATLAS/CMS datasets
 - Have already first results based on 13.6 TeV data
- HL-LHC is approaching (expecting an increase in statistics by a factor of ~ 20)

Back-up

Summary of CMS di-boson resonance searches

Overview of CMS B2G Results

Ŧ

8

F

8

TVH

Ň,

 $\blacktriangleright R \rightarrow HH$

 $\triangleright R \rightarrow ZZ$

 $\triangleright R \rightarrow WW$

► R → WW

0

11

K/M

Ċ.

Bulk

resonances

August 2023

Measurement of the Z boson invisible width

64

Higgs boson mass measurement

65

Observation of four top production

Expected and observed 95% CL intervals on EFT coupling parameters assuming one EFT parameter variation in the fit.

Operators	Expected C_i/Λ^2 [TeV ⁻²]	Observed C_i/Λ^2 [TeV $^{-2}$]
O_{OO}^1	[-2.4, 3.0]	[-3.5, 4.1]
$O_{Ot}^{\tilde{1}\tilde{c}}$	[-2.5, 2.0]	[-3.5, 3.0]
$O_{tt}^{\widetilde{1}}$	[-1.1, 1.3]	[-1.7, 1.9]
O_{Qt}^8	[-4.2, 4.8]	[-6.2, 6.9]

W/Z boson cross section measurements

Z boson cross section measurements

CMS-PAS-SMP-22-017

Single top quark production

Top-quark + X production

Searches for Higgs boson pair production

Search for high-mass exclusive diphoton production with tagged protons

Measurement of the strong coupling constant

Search for light long-lived neutral particles from Higgs boson decays

• Target: VBF production mode of the Higgs boson (for the first time)

- Predicted in dark sector models with additional U(1)_d symmetry weakly coupled to SM.
 - Leads to $H \rightarrow 2\gamma_d + X$ decays via Higgs & vector portals
 - Final states $(\gamma_d \rightarrow \ell^+ \ell^-/qq) + MET$ signature
- Focus on:
 - $\circ \quad \text{Small couplings } \epsilon \to \text{ long-lived } \gamma_d$
 - $\circ \quad m_{\gamma d}^{} <\!\! < m_{_{H}}^{} \rightarrow \text{ collimated } \gamma_{_{d}}^{} \text{ decays}$

For $\gamma_d \rightarrow \mu^+ \mu^-$

Decays outside Inner Tracking acceptance

Pair of close-by Tracks in the Muon Spectrometer

For $\gamma_d \rightarrow e^+e^-/qq$

Targeting decays in Hadronic Calorimeter

Low EM fraction jets

Search for light long-lived neutral particles from Higgs boson decays

 Perform statistical combination with results from studies in other Higgs boson production modes

<u>arXiv:2311.18298</u>

Statistical combination of Run 2 searches for electroweakinos

۲

_

- Effort to combine 12 EWK analyses
 - Focus on events with \cap WW/WZ/Wh/ZZ/Zh/hh + MET
- Consider a wide range of different signal scenarios
 - Wino pair-production with bino LSP Ο
 - Gauge mediated models with Ο gravitino LSP

77