Overview on C IAS Program on High Energy Physics (HEP 2024)

Caterina Vernieri caterina@slac.stanford.edu https://web.slac.stanford.edu/c3

NATIONAL ACCELERATOR LABORATORY

Thermal History of Universe

Naturalness

Fundamental or Composite?

Is it unique?

Caterina Vernieri · HEP 2024 · January 22, 2024

The Energy Frontier 2021 Snowmass Report

2

LHC → High Luminosity LHC LHC

Caterina Vernieri (SLAC)

HL-LHC

		HL-LI ATI	LHC installation TLAS Upgrade		Run 4/5 170M H 120k HH	
4	2025	2026	2027	2028	• • •	2039
LH re J	IC dete being b	ctor uilt				

Higgs at HL-LHC

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

The High Luminosity era of LHC will dramatically expand the physics reach for **Higgs physics:**

 2-5% precision for many of the Higgs couplings

BUT much larger uncertainties on Z\gamma and charm and ~50% on the selfcoupling

Higgs at HL-LHC

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

CERN-LPCC-2018-04

Light Yukawa out of reach in the LHC environment

FCC feasibility study report

New Panel - mini P5

Why e+e-?

- Initial state well defined & polarization \implies High-precision measurements
- Higgs bosons appear in 1 in 100 events \Rightarrow Clean experimental environment and triggerless readout

7

Higgs at e+e-

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

The Energy Frontier 2021 Snowmass Report

- ZH is dominant at 250 GeV
- Above 500 GeV
 - Hvv dominates
 - ttH opens up
 - HH accessible with ZHH

Caterina Vernieri · HEP 2024 · January 22, 2024

SLAC

Beyond EFT, is there more?

Higgs to strange coupling is an appealing signature to probe new physics

Is the Higgs the source for all flavor?

An option, **Spontaneous Flavor Violation** New physics can couple in a strongly flavor dependent way if it is aligned in the down-type quark or up-type quark sectors

- It allows for large couplings of additional Higgs to $\overset{\Xi}{\prec}$ strange/light quarks
- No flavor-changing neutral currents •

P. Meade

1811.00017 1908.11376 2101.04119

Detectors at future e+e-

Stringent detector requirements from ZH reconstruction

similar strategies

- High granularity calorimetry
 - many designs

arXiv:2003.01116

Higgs physics as a driver for future detectors R&D

- Advancing HEP detectors to new regimes of sensitivity
- Building next-generation HEP detectors with novel materials & advanced techniques

Initial state	Physics goal	Detector	Re
e^+e^-	$h\rm ZZ~sub-\%$	Tracker	σ_{p_T}
			$\sigma_{p_{T}}$
		Calorimeter	4%
			EN
			EN
			sho
	$hb\overline{b}/hc\overline{c}$	Tracker	σ_{rq}
			5μ

Arxiv:2209.14111 Arxiv:2211.11084 DOE Basic Research Needs Study on Instrumentation

The goal of measuring Higgs properties with sub-% precision translates into ambitious requirements for detectors at e+e-

quirement

 $_{T}/p_{T}=0.2\%$ for $p_{T}<100~{\rm GeV}$ $p_T/p_T^2 = 2 \cdot 10^{-5} / \text{ GeV for } p_T > 100 \text{ GeV}$ particle flow jet resolution I cells 0.5×0.5 cm², HAD cells 1×1 cm² $\Lambda \sigma_E / E = 10\% / \sqrt{E} \oplus 1\%$ ower timing resolution 10 ps $h_{b} = 5 \oplus 15(p \sin \theta^{\frac{3}{2}})^{-1} \mu m$ m single hit resolution

11

Linear vs. Circular

- Linear e+e- colliders
 - Reach higher energies (~ TeV)
 - Can use **polarized** beams
 - Relatively low radiation
 - Collisions in bunch trains
 - Power pulsing → Significant power saving for detectors
- **Circular** e+e- colliders
 - Highest luminosity collider at Z/WW/Zh
 - limited by synchrotron radiation above 350–400 GeV
 - Beam continues to circulate after collision
 - No power pulsing, detectors need active cooling → more material
 - Limits magnetic field in detectors to 2T

Various proposals ...

CLIC 380/1500/3000 GeV

FCC-ee 240/365 GeV

Why 550 GeV?

- We propose **250** GeV with a relatively inexpensive upgrade to **550** GeV on the same 8 km footprint.
- 550 GeV will offer an orthogonal dataset to cross-check a deviation from the SM predictions observed at 250 GeV
- O(20%) precision on the Higgs selfcoupling would allow to exclude/ demonstrate at 5σ models of electroweak baryogenesis

Collider Luminosity Polarization

arXiv:1908.11299 arXiv:1506.07830

	HL-LHC	C^3 /ILC 250 GeV	$\rm C^3$ /ILC 500 Ge
	3 ab^{-1} in 10 yrs	2 ab^{-1} in 10 yrs	$+ 4 \text{ ab}^{-1} \text{ in } 10 \text{ y}$
1	_	$\mathcal{P}_{e^+} = 30\%~(0\%)$	$\mathcal{P}_{e^+} = 30\% \ (0\%)$
	3.2	0.38(0.40)	0.20(0.21)
	2.9	0.38(0.40)	0.20(0.20)
	4.9	$0.80 \ (0.85)$	0.43(0.44)
	_	1.8(1.8)	1.1(1.1)
	2.3	1.6(1.7)	0.92(0.93)
	3.1	0.95(1.0)	$0.64 \ (0.65)$
	3.1	4.0(4.0)	3.8(3.8)
	3.3	1.1(1.1)	0.97 (0.97)
	11.	8.9(8.9)	6.5(6.8)
	3.5	—	$3.0 (3.0)^*$
	50	49(49)	22(22)
	5	1.3(1.4)	0.70(0.70)

C³ has been evaluated independently by the Implementation Task Force along with the other proposals Strong engagement and support from Energy Frontier

Opportunity for US as a site for a future Energy Frontier Collider 1.7.4

Our vision for the EF can only be realized as a worldwide program, and CERN as host of the LHC has been the focus of EF activities for the past couple of decades. In order for scientists from all over the world to buy into the program, the program has to consider siting future accelerators anywhere in the world. The US community has to continue to work with the international community on detector designs and develop extensive R&D programs, and the funding agencies (DOE and NSF) should vigorously fund such programs (as currently the US is severely lagging behind).

The US community has expressed a renewed ambition to bring back EF collider physics to the US soil, while maintaining its international collaborative partnerships and obligations, for example with CERN. The international community also realizes that a vibrant and concurrent program in the US in EF collider physics is beneficial for the whole field, as it was when Tevatron was operated simultaneously as LEP.

The US EF community proposes to develop plans to site an e^+e^- collider in the US. A Muon Collider remains a highly appealing option for the US, and is complementary to a Higgs factory. For example, some options which are considered as attractive opportunities for building a domestic EF collider program are:

- A US-sited linear e^+e^- (ILC/CCC) Collider
- Hosting a 10 TeV range Muon Collider
- Exploring other e^+e^- collider options to fully utilize the Fermilab site

ArXiv:2211.11084

Proposal Name	Power	Size	Complexity	Radiation
	Consumption			Mitigation
FCC-ee (0.24 TeV)	290	91 km	I	Ι
CEPC (0.24 TeV)	340	100 km	I	Ι
ILC (0.25 TeV)	140	20.5 km	Ι	Ι
CLIC (0.38 TeV)	110	11.4 km	II	Ι
CCC (0.25 TeV)	150	3.7 km	Ι	Ι
CERC (0.24 TeV)	90	91 km	II	Ι
ReLiC (0.24 TeV)	315	20 km	II	Ι
ERLC (0.24 TeV)	250	30 km	II	Ι
XCC (0.125 TeV)	90	1.4 km	II	Ι
MC (0.13 TeV)	200	0.3 km	Ι	II
ILC (3 TeV)	~400	59 km	II	II
CLIC (3 TeV)	~550	50.2 km	III	II
CCC (3 TeV)	~700	26.8 km	II	II
ReLiC (3 TeV)	~780	360 km	Ш	Ι
MC (3 TeV)	~230	10-20 km	II	III
LWFA (3 TeV)	~340	1.3 km	II	Ι
		(linac)		
PWFA (3 TeV)	~230	14 km	II	II
SWFA (3 TeV)	~170	18 km	II	II
MC (14 TeV)	~300	27 km	III	III
LWFA (15 TeV)	~1030	6.6 km	III	Ι
PWFA (15 TeV)	~620	14 km	III	II
SWFA (15 TeV)	~450	90 km	III	II
FCC-hh (100 TeV)	~560	91 km	II	III
SPPC (125 TeV)	~400	100 km	II	III

ArXiv:2208.06030

15

C³ is a new linac **normal conducting technology**

Optimize each cavity for maximum efficiency and lower surface fields

- Relatively small iris such that RF fundamental does not propagate through irises.
- RF power coupled to each cell no on-axis coupling required modern super-computing
 - Distributed power to each cavity from a common RF manifold
 - Mechanical realization by modern CNC milling

Electric field magnitude for equal power from RF manifold

arXiv:2110.15800 Tantawi, S et al. PRAB 23.9 (2020) 092001

First C³ structure at SLAC

- Cryogenic temperature elevates performance in gradient •
 - Increased material strength for gradient •
 - Increase electrical conductivity reduces pulsed heating in the material
- Operation at 77 K with liquid nitrogen is simple and practical

ArXiv:2210.17022

17

- Robust operations at high gradient: 120 MeV/m •
 - Start at 70 MeV/m for C³⁻250
- Scalable to multi-TeV operations

Time (ns)

arXiv:2110.15800

Accelerator Complex

8 km footprint for 250/550 GeV CoM \rightarrow 70/120 MeV/m

- 7 km footprint at 155 MeV/m for 550 GeV CoM present Fermilab site Large portions of accelerator complex compatible between LC technologies
- Beam delivery / IP modified from ILC (1.5 km for 550 GeV CoM)
- Damping rings and injectors to be optimized with CLIC as baseline

Collider	C^3	C^3
CM Energy [GeV]	250	550
Luminosity $[x10^{34}]$	1.3	2.4
Gradient [MeV/m]	70	120
Effective Gradient [MeV/m]	63	108
Length [km]	8	8
Num. Bunches per Train	133	75
Train Rep. Rate [Hz]	120	120
Bunch Spacing [ns]	5.26	3.5
Bunch Charge [nC]	1	1
Crossing Angle [rad]	0.014	0.014
Site Power [MW]	$\sim \! 150$	$\sim \! 175$
Design Maturity	pre-CDR	pre-CDR

C³ Parameters

SLAC Caterina Vernieri · HEP 2024 · January 22, 2024

Importance of beam-beam background

The effects of beam-beam interactions have to be careful simulated for physics and detector performance

- Beamstrahlung photons are radiated when the two bunches intersect at the IP and can produce additional background particles
 - Incoherent pair production
 - Bethe-Heitler (BH): interaction of BS photon with a virtual photon
 - Landau-Lifschitz (LL): interaction of two virtual photons Breit-Wheeler (BW): interaction of two BS photons
 - Muon and Hadron photo-production
- Beamstrahlung widens the luminosity spectrum considerably
 - Enables collisions at lower \sqrt{s} and softens initial state constraints \rightarrow important for kinematic fits,
 - Photoproduced jets affect clustering performance, JER, JES
- High flux in vertex barrel and forward sub detectors
 - Increase in detector occupancy \rightarrow Impacts detector design

Joint simulation/detector optimization effort with ILC groups **Contacts CV and Lindsey Gray**

20 D. Ntounis, manuscript to appear soon

106

104 109

10

Luminosity Spectra

significant increase in the beam-beam background rates

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

luminosity in the top 1 % of \sqrt{s}

C Beam Format and Detector Design Requirements

ILC timing structure

1 ms long bunch trains at 5 Hz 308ns spacing

- Linear e+e- colliders are characterized by a very low duty cycle •
- Power Pulsing can be an additional handle to reduce power consumption • and cooling constraint
 - Factor of 100 power saving for FE analog power
- Tracking detectors don't need active cooling •
 - Significantly reduction for the material budget

Joint simulation/detector optimization effort with ILC groups **Common US R&D initiative for** future Higgs Factories 2306.13567

C³ time structure is compatible with ILC-like detector overall design and ongoing optimizations.

First study looked at 9.5 m inner diameter in order to match ILC costing model

- Must minimize diameter to reduce cost and construction time

Usable Tunnel Width - 9.5 m

• Surface site (cut/cover) provides interesting alternative – concerns with length of site for future upgrade

Cut-and-cover

C Power Consumption and Sustainability

- Compact footprint < 8 km for both underground and surface sites
- Sustainability construction + operations CO_2 emissions per % sensitivity on couplings
 - Polarization and high energy to account for physics reach Ο
 - Construction CO_2 emissions \rightarrow minimize excavation and concrete with cut and cover approach Ο
 - Main Linac Operations \rightarrow limit power, decarbonization of the grid and dedicated renewable sources Ο

Scenario	rf system (MW)	Cryogenic system (MW)	To (M
Baseline 250 GeV	40	60	1
rf source efficiency increased by 15%	31	60	9
rf pulse compression	28	42	7
Double flat top	30	45	7
Halve bunch spacing	34	45	7
All scenarios combined	13	24	3

Accelerator Design

Engineering and design of prototype cryomodule underway

Focused on challenges identified with community through Snowmass (all underway)

- Gradient Scaling up to meter scale cryogenic tests
- Vibrations Measurements with full thermal load
- Alignment Working towards raft prototype
- Cryogenics Two-phase flow simulations to full flow tests
- Damping Materials, design and simulation
- Beam Loading and Stability Beam test with thermionic gun
- Scalability Cryomodules and integration

Laying the foundation for a demonstration program to address technical risks beyond CDR level

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

High Accelerating Gradients Cryogenic Operation

More recent tests, new results to appear soon

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

High Accelerating Gradients Cryogenic Operation

More recent tests, new results to appear soon

Precision Short and Long Range Alignment

Tested in LN and meets specs pre-alignment

High Accelerating Gradients Cryogenic Operation

More recent tests, new results to appear soon

Precision Short and Long Range Alignment

Tested in LN and meets specs pre-alignment

Glen White

Alignment Parameters	Units	Value
Raft Components	μm	5
Short Range (~10m)	μm	30
Long Range (>200m)	μm	1000
Structure Vert. Vibration	μm	9
Quad Vert. Vibration	nm	15
BPM Resolution	μm	0.1
BPM-Quad Alignment	μm	2

C³ The Complete C³ Demonstrator

SLAC Caterina Vernieri · HEP 2024 · January 22, 2024

C The Complete C³ Demonstrator

R&D needed to advance technology beyond CDR level

- **Demonstrate fully engineered cryomodule**
- Demonstrate full liquid/gas cryogenic flow in main linac
- Multi-Bunch: Induce and witness wakefields
- Operational gradient with margin 155 MeV/m
- Fully damped-detuned accelerating structure
- Work with industry to develop C-band source unit optimized for installation with main linac

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

C³ Demonstration R&D Plan Timeline *

Tasks	2022	2023	2024	2025
Structure Development				
Single Structure Beam Dynamics Modeling				Mad
Raft Development 1				ivied
Vibration Studies - Small Scale	S	tage 0		Indus
Design Demo Cryogenics	_			Compo
Raft Development 2				Compac
Structure Development Damping				
Cryomodule Engineering Development				
Demonstrator Beamline Design		Program		
Demonstration Proposal				
Organize Demo Controls Group	De	velopm	ent	
RF Components (First Half Cryomodule)				Stage
Demonstrator Facility Cryogenic Engineering				Olugo
Assemble First Half Cryomodule				
Install Half Cryomodule with RF and DC Gun				
Injector RF Components				4
Assemble Injector				
Install Photo Injector				
Beam Test Injector				
RF Components (First Full Cryomodule)				
Assemble First Full Cryomodule				
Install First Full Cryomodule with RF				
RF Components (Second and Third Cryomodule)				
Assemble Second and Third Cryomodule				
Install Second and Third Cryomodule with RF				
Beam Tests				
			+	

SLAC Caterina Vernieri · HEP 2024 · January 22, 2024

Area Recommendation 8 P5 report

* Technically Limited

C³ Demonstration R&D Plan Timeline *

Tasks	2022	2023	2024	2025	
Structure Development					
Single Structure Beam Dynamics Modeling				Mad	1: -
Raft Development 1				Ivied	IC
Vibration Studies - Small Scale	S	tage 0		Indus	st
Design Demo Cryogenics				Compos	.+
Raft Development 2				Compac	J
Structure Development Damping					
Cryomodule Engineering Development					
Demonstrator Beamline Design		Program			
Demonstration Proposal					
Organize Demo Controls Group	De	velopm	ent		
RF Components (First Half Cryomodule)				Stage	Ľ
Demonstrator Facility Cryogenic Engineering				Oluge	
Assemble First Half Cryomodule					4
Install Half Cryomodule with RF and DC Gun					1
Injector RF Components				4	
Assemble Injector					
Install Photo Injector					
Beam Test Injector					
RF Components (First Full Cryomodule)					-
Assemble First Full Cryomodule					
Install First Full Cryomodule with RF					
RF Components (Second and Third Cryomodule)					
Assemble Second and Third Cryomodule					
Install Second and Third Cryomodule with RF					
Beam Tests					
			+		_

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

* Technically Limited

Stage 1/2 will answer the most pressing technical questions - beam loading, damping, alignment required to complete the engineering to a level appropriate for a CDR

Synergies with Future Colliders

RF Accelerator Technology Essential for All Near-Term Collider Concepts

- CLIC components, damping, fabrication techniques
- ILC options for electron driven positron source based C³ technology
- Muon Collider high gradient cryogenic copper cavities in cooling channel, alternative linac for acceleration after cooling AAC - C³ Demo utilized for staging, C³ facility multi-TeV energy upgrade reutilizing tunnel, $\gamma\gamma$ colliders
- FCC-ee common electron and positron injector linac from 6 to 20 GeV
 - reduce length 3.5X <u>OR</u> reduce rf power 3.5X Ο

- Planned test at Argonne
- Tracking with Lucretia includes longitudinal and transverse wakes, chromatic effects etc.
- Error study is 100 seeds, 100 µm element offsets, 300 µrad element rolls (rms)
 - No corrections applied Ο

C³ cryomodule provides significant improvements to size and sustainability of FCC-ee high energy linac C³ Demo timeline <u>needs to be</u> compatible with selection of FCC-ee injector

C³ Demo is positioned to contribute synergistically or directly to all near-term collider concepts

90% seeds < 8 um-rad with lattice errors

SLAC Caterina Vernieri · HEP 2024 · January 22, 2024

So. Cal

nity Study 2021)	Community Workshops:
SLAC-PUB-17661 April 12, 2022	Virtual, Fermilab, SLAC, LANL & Cornell University
s Physics:	220 Dartiainanta 60 Institutiona
SLAC-PUB-17629 November 1, 2021	220 Panicipants 60 Institutions
and Beyond	https://sites.google.com/view/ec4c3
<image/>	<image/> <text></text>

- The Higgs boson is our most recent advance in the understanding of the fundamental particles
 - a new state of matter-energy
 - a potential window to Beyond the Standard Model through precision measurements
 - a possible relation between Higgs and dark • matter, baryogenesis and inflation
- Collider physics is essential to explore the property of the Higgs Boson and EWSB
 - Higgs plays a central element for the **future** colliders
 - C³ can provide a rapid route to precision Higgs physics with a compact footprint

thank you!

Energy upgrade in parallel to operation with installation of additional RF power sources

	2019-2	2024	202	25-20)34		203	35-20)44		204	5-20)54		205	55-20)64	
Accelerator																		
Demo proposal																		
Demo test																		
CDR preparation																		
TDR preparation																		
Industrialization																		
TDR review																		
Construction																		
Commissioning																		
$2~\mathrm{ab^{-1}}~@~250~\mathrm{GeV}$																		
RF Upgrade																		
$4 \text{ ab}^{-1} @ 550 \text{ GeV}$																		
Multi-TeV Upg.																		

HL-LHC

NEWS DIGEST

C³, a novel route to a linear e⁺e⁻ collider

A candidate triple-J/ ψ event.

Triple treat for CMS

The CMS collaboration has observed three J/ ψ particles emerging from a single collision between two protons for the first time, offering a new way to study the evolution of the transverse density of quarks and gluons inside the proton (arXiv:2111.05370). Analysing LHC Run-2 events in which a J/ ψ decays into a pair of muons, the team identified five in which three J/ ψ particles were produced simultaneously, with a statistical confidence of more than 5σ . The measured cross section is consistent, within the current large uncertainties, with previous measurements of double-I/ ψ

three colder than currently used for antihydrogen formation, the Penning-trap scheme is expected to increase the amount of trapped antihydrogen per mixing attempt by up to a factor of five, paving the way for faster and more precise measurements of antihydrogen (Nat. Commun. **12** 6139).

Meet the cool copper collider

A team from SLAC and other institutions has presented a proposal for a linear e⁺e⁻ collider with a "compact" footprint of 8km (arXiv:2110.15800). Based on recent advances in normal-conducting copper accelerator technology, the new "C³" (Cool Copper Collider) concept would provide a rapid path to precision Higgs-boson and top-quark measurements as well as a first step towards multi-TeV e⁺e⁻ physics, write the authors. The machine could in principle be located anywhere in the world, they state, and would enable a staged programme at 250 and 550 GeV similar to that proposed for the ILC. The proposal has been submitted to the US Snowmass community planning exercise (p43).

Factory

October 6, 2022 • Physics 15, 155

than other collider designs.

beams would pass.

https://physics.aps.org/articles/v15/155

Physics about browse press collections Q Search articles

RESEARCH NEWS

A "Retro" Collider Design for a Higgs

The Cool Copper Collider is a new proposal for a Higgs-producing linear collider that would be more compact

Emilio Nanni/SLAG

A prototype version of the Cool Copper Collider. The photo shows the central region where the particle

Physics requirements for detectors

Precision challenges detectors

ZH process: Higgs recoil reconstructed from $Z \rightarrow \mu\mu$

- Drives requirement on charged track momentum and jet resolutions
- Sets need for high field magnets and high precision / low mass trackers

Particle Flow reconstruction

Higgs \rightarrow bb/cc decays: Flavor tagging & quark charge tagging at unprecedented level

- Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP
- <0.3% X0 per layer (ideally 0.1% X0) for vertex detector</p>
- \circ Sensors will have to be less than 75 μ m thick with at least e^+ 5 μ m hit resolution (17-25 μ m pitch)

arXiv:2003.01116

Physics requirements for detectors

Precision challenges detectors

ZH process: Higgs recoil reconstructed from $Z \rightarrow \mu\mu$

- Drives requirement on charged track momentum and jet resolutions
- Sets need for high field magnets and high precision / low mass trackers

Particle Flow reconstruction

Higgs \rightarrow bb/cc decays: Flavor tagging & quark charge tagging at unprecedented level

- Drives requirement on charged track impact parameter resolution \rightarrow low mass trackers near IP
- <0.3% X0 per layer (ideally 0.1% X0) for vertex detector</p>
- \circ Sensors will have to be less than 75 μ m thick with at least e^+ 5 μ m hit resolution (17-25 μ m pitch)

arXiv:2003.01116

Need new generation of ultra low mass vertex detectors with dedicated sensor designs

Sensors technology requirements for Vertex Detector

Several technologies are being studied to meet the physics performance

Sensor's contribution to the total material budget of vertex detector is 15-30%

pitch) and low power consumption

Physics driven requirements 2.8um $\sigma_{\rm s.p.}$ \rightarrow Air cooling \rightarrow r of Inner most layer 16mm beam-related background \ldots \sim radiation damage \sim

- Sensors will have to be less than 75 μ m thick with at least 3-5 μ m hit resolution (17-25 μ m)

Running constraints

Sensor specifications

Small pixel $\sim 16 \, \mu m$ Thinning to 50 µm low power 50 mW/cm^2 fast readout $\sim 1 \mu s$ radiation tolerance *≤*3.4 *Mrad/year* $\leq 6.2 \times 10^{12} n_{eq} / (cm^2 year)$

MAPS

Monolithic Active Pixel Sensors (MAPS) for high precision tracker and high granularity calorimetry

- Monolithic technologies have the potential for providing higher granularity, thinner, intelligent detectors at lower overall cost.
- Significantly lower material budget: sensors and readout electronics are integrated on the same chip
 - Eliminate the need for bump bonding : thinned to less than 100μ m
 - Smaller pixel size, not limited by bump bonding
 - Lower costs : implemented in standard commercial CMOS processes

Initial specifications for fast MAPS aka NAPA

Parameter	Value
Min. Threshold	$140 e^-$
Spatial resolution	$7~\mu{ m m}$
Pixel size	$25 \mathrm{~x} ~ 100 \ \mu \mathrm{m}^2$
Chip size	$10 \ge 10 \text{ cm}^2$
Chip thickness	$300~\mu{ m m}$
Timing resolution (pixel)	$\sim ns$
Total Ionizing Dose	100 kRads
Hit density / train	$1000 \text{ hits } / \text{ cm}^2$
Hits spatial distribution	Clusters
Power density	$20~\mathrm{mW}\ /\ \mathrm{cm}^2$

Table 1: Target specifications for 65 nm prototype.

Global Contributions

SLAC

P5 Town H

C³ Technical Timeline Only Possible with the Exceptional Progress of ILC and CLIC

- Benefit from injector complex and beam delivery concepts
- Continue to benefit from technological improvement by ILC and CLIC

Electron Driven High Efficiency RF Sources (CLIC) **Positron Source** Latest design (3D model) of the prototype positron source for ILC Retro-fit High Efficiency 50 MW, 12 GHz klystron (CERN/CPI). Saturated efficiency & RF power 3D Particle-in-Cell (PIC) simulations CST solenoid Rotating target unit /KX-8311A VKX-8311A 420 /oltage, kV 420 Current, A 322 204 Frequency, GHz 11.994 11.994 59 Peak power, MW 49 59 48 Sat. gain, dB FC unit 69 Efficiency, % 36.2 CERN designed High Efficiency Life time, hours 30 000 85 000 klystron successfully tested Solenoidal magnetic 0.6 0.37 21 July, 2022 field, T VKX-8311A RF circuit length, m 0.316 0.316 Sarchev, CERN

Courtesy of Y. Enomoto

Nanobeams for IP (ATF)

Vibrant International Community for Future Colliders is Essential **National Future Colliders R&D** in the US to Optimize Efforts

Power Consumption and Sustainability

Compatibility with Renewables Cryogenic Fluid Energy Storage

Temperature (K)

Beam Loading (%) Gradient (MeV/m) Flat Top Pulse Lengt (μs)

Cryogenic Load (MW Main Linac Electrica Load (MW) Site Power (MW)

Intermittent and variable power production from renewables mediated with commercial scale energy storage and power production

	77
	45
	70
h	0.7
/)	9
	100
	~150

250 GeV CoM - Luminosity - 1.3x10³⁴

Parameter	Units	
Reliquification Plant Cost	M\$/MW	
Single Beam Power (125 GeV linac)	MW	
Total Beam Power	MW	
Total RF Power	MW	
Heat Load at Cryogenic	MW	
Temperature		
Electrical Power for RF	MW	
Electrical Power For	MW	
Cryo-Cooler		
Accelerator Complex	MW	
Power		
Site Power	MW	

MAPS Detector R&D

Monolithic Active Pixel Sensors (MAPS) for high precision tracker and high granularity calorimetry

- Monolithic technologies have the potential for provi higher granularity, thinner, intelligent detectors at lo overall cost.
- Significantly lower material budget: sensors and re-electronics are integrated on the same chip
 - Eliminate the need for bump bonding : thinned to Ο than 100μ m
 - Smaller pixel size, not limited by bump bonding Ο
 - Lower costs : implemented in standard commerce Ο CMOS processes
- SLAC is part of the existing CERN WP 1.2 collaboration Ο
- R&D efforts towards a wafer-scale MAPS on TowerJazz Ο 65 nm

iding	Parameter	Value
ower	Min. Threshold	$140 e^{-}$
	Spatial resolution	$7~\mu{ m m}$
adout	Pixel size	$25~{ m x}~100~\mu{ m m}^2$
auoui	Chip size	$10 \ge 10 \text{ cm}^2$
	Chip thickness	$300~\mu{ m m}$
bless	Timing resolution (pixel)	$\sim ns$
	Total Ionizing Dose	100 kRads
	Hit density / train	$1000 \text{ hits} / \text{ cm}^2$
	Hits spatial distribution	Clusters
lai	Power density	$20 \text{ mW} / \text{ cm}^2$

Table 1: Target specifications for 65 nm prototype.

Material Budget

Lower material budget than ATLAS ID, from 1.6 \rightarrow 0.6 X₀ at $\eta \sim 1$

Caterina Vernieri - Michigan State University - March 26, 2023 SLAC

η

A strong US-based initiative mitigates Global Uncertainty

The Snowmass Energy Frontier discussions have unequivocally highlighted the following theme:

- The US community advocates for an active role in planning for future colliders
 - Investigate the possibility of an Higgs factory and the R&D for a future muon collider in the US
 - Given global uncertainties, consideration should be given to the timely realization of a domestic Higgs factory, in case none of the currently proposed options will be realized.
- Future colliders will set unique challenges in detector design to achieve our ambitious physics goals

The investment in detector and collider R&D for lepton facilities in the US should start now

- A parallel effort with the LHC to enable a future e+e- precision electroweak program and a high-energy machine
- the international community, regardless of where the next big project will be realized

The opportunity to work on fundamental problems and technological challenges is a key element to motivate students and early career scientists

the young and future generations of scientists in the US.

Such a domestic R&D program would grow the US accelerator & detector workforce and strengthen

• A US-based future collider R&D program will give the impetus to make particle physics program attractive to

The Higgs self-coupling at future colliders

O(20%) precision on the Higgs self-coupling would allow to exclude/demonstrate at 5σ models of electroweak baryogenesis

Caterina Vernieri

	Indirect- h	hh	combined
	100-200%	50%	50%
50]	49%	—	49%
50]	38%	20%	20%
_	50%	_	50%
	49%	36%	29%
	49%	9%	9%
	33%	_	33%
3]	24%	_	24%
-	-	3.4 - 7.8%	3.4 - 7.8%
	-	15 - 30%	15 - 30%
	-	4%	4%

43

s-tagging

Tagging strange is a challenging but not impossible task for future detectors at e+e-

As b,c, and s jets contain at least one strange hadron Strange quarks mostly hadronize to prompt kaons which carry a large fraction of the jet momentum Strange hadron reconstruction:

Distinctive two-prong vertices topology

Jet flavour	Number of secondary vertices (excluding V^0 s)	Number of strange hadrons (e.g., K^{\pm} , $K^0_{L/S}$, and Λ^0)
Bottom	2	≥ 1
Charm	1	≥ 1
Strange	0	≥ 1
Light	0	0

2101.04119 2203.07535

44

Constraints on s-coupling

Compatible results for both FCC and ILC like analyses

- ILD combined limit of $\kappa_s < 6.74$ at 95% CL with 900/fb at 250 GeV (i.e. half dataset)
 - No PID worsen the results by 8%
- FCC for Z(vv) only sets a limit of $\kappa_s < 1.3$ at 95% CL with 5/ab at 250 GeV and 2 IPs

SLAC

arXiv:2203.07535 L. Gouskos @FCC week

Higgs couplings at future machines

- The $Z\gamma$ interaction remains difficult to measure at all future machines •
- top coupling
- do not allow for BSM decays

Caterina Vernieri

Higher energy collision is required (factor 2 from 500 to 550 GeV e+e-) to further constraints the Higgs-

These results are based on the κ₀ scenario of the ESG (combined with projections for HL-LHC results) and

Higgs 2022 · Pisa · November 7-11, 2022

One note on polarization

- There are extensive comparisons between the FCC plan and the C³/ILC runs that show they are rather compatible to study the Higgs Boson
- When analyzing Higgs couplings with SMEFT, 2 a polarized running is essentially equivalent to 5 ab unpolarized running.
 - Electron polarization is essential for this. But, • is almost no difference in the expectation with without positron polarization.
 - Positron polarization allows more cross-checks • systematic errors. We may wish to add it later.
 - Positron polarization brings a large advantage • multi-TeV running, where the most important sections are from $e_Le_R^+$

٠

•

arXiv:1708.08912 arXiv:1801.02840

C-ee					
r		2/ab-250	+4/ab-500	5/ab-250	+ 1.5/ab
	$\operatorname{coupling}$	pol.	pol.	unpol.	unpo
	HZZ	0.50	0.35	0.41	0.34
ab ⁻¹ of	HWW	0.50	0.35	0.42	0.35
0 ⁻¹ of	Hbb	0.99	0.59	0.72	0.62
	H au au	1.1	0.75	0.81	0.71
. 1	Hgg	1.6	0.96	1.1	0.96
, there	Hcc	1.8	1.2	1.2	1.1
n and	$H\gamma\gamma$	1.1	1.0	1.0	1.0
	$H\gamma Z$	9.1	6.6	9.5	8.1
s of	$H\mu\mu$	4.0	3.8	3.8	3.7
5 01	Htt	-	6.3	-	-
•	HHH	-	27	-	-
in	Γ_{tot}	2.3	1.6	1.6	1.4
cross	Γ_{inv}	0.36	0.32	0.34	0.30
	Γ_{other}	1.6	1.2	1.1	0.94

Higgs couplings: precision & kinematic

Caterina Vernieri

The **EFT formalism summarizes** deviations that might appear in a very wide class of models beyond the SM

Assuming new physics at some scale $M \gg v$

Higgs couplings: precision & kinematic

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{M^2} \sum_{k} \mathcal{O}_k$$

Sub-percent level measurements can test TeV-scale new physics effect

If E~m_H and M~1 TeV, the effects of **dim-6** (8) operators are of the order of **few** % (10⁻⁴) •

$$\delta O \sim \left(\frac{v}{M}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{M}\right)$$

Caterina Vernieri

The **EFT formalism summarizes** deviations that might appear in a very wide class of models beyond the SM

Assuming new physics at some scale $M \gg v$

2

Higgs couplings: precision & kinematic

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{M^2} \sum_{k} \mathcal{O}_k$$

Sub-percent level measurements can test TeV-scale new physics effect If E~m_H and M~1 TeV, the effects of **dim-6** (8) operators are of the order of **few** % (10-4) •

$$\delta O \sim \left(\frac{v}{M}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{M}\right)$$

Measurements at large transferred momentum (Q) probe large M even if precision is low

$$\delta O_Q \sim \left(\frac{Q}{M}\right)^2$$

Caterina Vernieri

The **EFT formalism summarizes** deviations that might appear in a very wide class of models beyond the SM

Assuming new physics at some scale $M \gg v$

15% effect on δO_Q for M ~ 2.5 TeV

48

Prospects for light quark couplings at HL-LHC

- Exclusive decays to γ +meson include contributions • from light quark Yukawa couplings
- Interpretation of Higgs width constraint: direct • measurement and via off-shell
- Interpretation of kinematic distributions •
- Direct search for $H \rightarrow cc$ •
- Global fit of all Higgs couplings (assuming no other • BSM decays)

CERN-LPCC-2018-04

s-tagging in the past

SLD at SLC (e+e- at the Z) measured asymmetry in $Z \rightarrow s\overline{s}$

SLAC Caterina Vernieri · HEP 2024 · January 22, 2024

PRL 85 (2000), 5059 SLAC-R-520

A Cherenkov Ring Imaging Detector combined with a drift chamber and vertex detector

- CRID only available for K[±] with p_T > 9 GeV with a selection efficiency (purity) of 48% (91.5%)
- K⁰_S efficiency (purity) of 24% (90.7 %)

Particle ID for s-tagging

Combining different strategies for optimal PID performance across a wide p_T range

1912.04601 e2019-900045-4

Particle ID for s-tagging

Combining different strategies for optimal PID performance across a wide p_T range

- dE/dx from silicon (< 5 GeV) and large gaseous tracking detectors (< 30 GeV)
- \cdot < 5 GeV, time-of-flight (i.e. 100 ps from ECAL)

SLAC Caterina Vernieri · HEP 2024 · January 22, 2024

Strange tagging performance 1/2

IDEA-like detector and Particle cloud graph neural network (fast sim)

- Both TOF and dN/dx ($3\sigma < 30$ GeV) included as inputs
- No PID to PID with $dN/dx \rightarrow at$ fixed mistag, efficiency doubles

SLAC Caterina Vernieri · ECFA Workshop · October 11, 2023

PRD 101 056019 (2020) EPJ C 82 646 (2022) L. Gouskos @FCC week

Strange tagging performance 2/2

ILD-like detector with full simulation and Recurrent NN

- Includes PDG-based PID \rightarrow assuming perfect detector capability
- At 50% s-tag efficiency, 90% background rejection
- No PID to PID < 10 (30) GeV \rightarrow at fixed mistag, 1.5x (2x) efficiency

Caterina Vernieri · HEP 2024 · January 22, 2024 SLAC

Analysis strategy to target $H \rightarrow ss$

Exploit Z boson reconstruction in the ZH associated mode

- At 250 GeV the total Zh cross section can be extracted independently of the Higgs boson's detailed properties by counting events with an identified Z boson
- Looking at 0 or 2 leptons Z decay modes

arXiv:2203.07622 Gouskos @FCC week

HH prospects

Caterina Vernieri

HH prospects

Caterina Vernieri

bbbb bbγγ

bbττ

MAAAS Become a Member

<u>September 2018 - Science Magazine</u>

Careers -

Science

1

The LHC experiments may need years to see a signal. Later this year, the LHC will idle for 2 years for upgrades. In 2026 it will undergo another 2-year hiatus to boost its collision rate. The so-called High-Luminosity LHC would then run until 2034. On paper, only the full run will yield enough data to validate the standard model prediction. However, some physicists think they can beat that timetable as their Higgs-spotting algorithms continue to improve. "Even before the High-Luminosity LHC, I think we could get close to the standard model prediction," says Caterina Vernieri, a CMS member at Fermilab.

Contents -

News -

Of course, all LHC experimenters hope the rate for double-Higgs events will exceed the standard model prediction. It cannot be sky

Journals 👻

Two Higgs bosons may have decayed into bottom quarks in this 2016 collision in the ATLAS detector. ATLAS EXPERIMENT © 2018 CERN

HH prospects

With Full Run 2 data - significant analyses improvements on top of additional data Combination of the best channels could get us close to test the SM hypothesis at the end of Run 3

Caterina Vernieri

Physics requirements for e+e-

- ۲ track momentum resolution
 - High field magnets and high precision/low mass trackers •
- Flavour tagging & quark charge tagging will be available at an unprecedented level •
 - new generation of vertex detectors with dedicated sensor designs to address the modest, but challenging, ILC backgrounds.
 - •

Physics Process	Measured Quantity	Critical System	Physical Magnitude	Required Performance			<u>arXiv:2</u>	<u>2003.01116</u>
Zhh $Zh \rightarrow q\bar{q}b\bar{b}$ $Zh \rightarrow ZWW^{*}$ $ u\overline{\nu}W^{+}W^{-}$	Triple Higgs coupling Higgs mass $B(h \rightarrow WW^*)$ $\sigma(e^+e^- \rightarrow \nu\overline{\nu}W^+W^-)$	Tracker and Calorimeter	Jet Energy Resolution $\Delta E/E$	3% to 4%	√ <i>s</i> 250 GeV	$\begin{array}{c} \text{Observable} \\ \sigma(\mathrm{e^+e^-} \rightarrow \mathrm{Z}h) \\ & m_h \\ & m_h \\ & m_h \end{array} \\ Br(h \rightarrow \mathrm{b}\overline{\mathrm{b}}) \end{array}$	Precision ±0.30 fb (2.5 %) 32 MeV 27 MeV 2.7 %	Com Model In Model In Model D include
$Zh \to \ell^+ \ell^- X$ $\mu^+ \mu^- (\gamma)$ $Zh + h\nu\overline{\nu} \to \mu^+ \mu^- X$	Higgs recoil mass Luminosity weighted ${\sf E}_{ m cm}$ BR $(h o \mu^+\mu^-)$	μ detector Tracker	Charged particle Momentum Resolution $\Delta p_t/p_t^2$	$5 \times 10^{-5} (GeV/c)^{-1}$	250 GeV	$Br(h \to c\overline{c})$ $Br(h \to gg)$	7.3 % 8.9 %	fr σ(e ⁺ e ⁻
$Zh, h \to b\bar{b}, c\bar{c}, b\bar{b}, gg$	Higgs branching fractions b-quark charge asymmetry	Vertex	lmpact parameter	$5\mu m \oplus$ $10\mu m/p (GeV/c) \sin^{3/2} \theta$				

Caterina Vernieri

The ZH process, with the recoiling Higgs reconstructed from the Z \rightarrow II drives the requirement on charged

soft beamstrahlung pairs create high occupancies that demand fast readouts, requiring extra power.

Linear & Circular Collider - Detector Impact

- **Linear** colliders : ILC, CLIC •
- Only possible way towards high-energy with leptons Ο
- Polarized collisions possible Ο
- The time structure and low radiation background provides an environment which allows us to consider **very light**, low power Ο detector structures
- **Circular** colliders : FCC, CEPC
 - Highest luminosity at Z pole/WW/ZH, but strongly limited by synchrotron radiation above 350–400 GeV
 - The interaction rates (up to 100 kHz at the Z pole) put strict constraints on the event size and readout speed
 - Due to beam crossing angle, solenoid magnetic field is limited to 2 T to avoid a significant impact on the luminosity Ο
 - Trackers must achieve good resolution without power pulsing Ο
- Linear colliders allow lower mass Si pixel and strip trackers

·····		• •		į	•	•	•	• •	_
				;					
#15				÷					
				i					
				÷			_		
				Ē	:	:			
	-	• •	• •	÷	•	•	-	• •	_
	-	••	•••	÷	•	•	-	• •	-
	-	• •	• •	2	•	•	•	• •	-
				i			-		
				;					
		• •	• •	ł	•	•	-	• •	
	•	•••	• •	ì	•	•	-	• •	
				:					
				i					
		•••	•••	ì	•	•	•		
				:					
				÷					
:				:					
				:			_		
							_		
	• • •	• •	• •	þ	•	•	•	• •	-
				Ì	:	:	:		
					:	-	:		
					•	-	-		
_					:		-		
_					•	-	-		
_			· · · · · ·		•	-	-		
_			· · · · · ·			-	-		
_			 			-	-		
			· · · · · ·		-	-	-		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · ·	-	-		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-	-	-		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	***************************	-	-	-		
			· · · · · · · · ·		-	-	-		
			· · · · · · · · · · · · · · · · · · ·		-		-		
					· · · · · · · ·	· · · · · · ·	-		

Self-coupling at e+e-

The self-coupling could be determined also through single Higgs processes

- Relative enhancement of the $e+e- \rightarrow ZH$ crosssection and the $H\rightarrow W+W-$ partial width
- Need multiple Q² to identify the effects due to the self-coupling

Higgs at e⁺e⁻

Upper Limits / Precision on κ_e

- Circular lepton colliders FCC-ee provide the • highest luminosities at lower centre-of-mass energies
 - Unique opportunity to measure the Higgs • boson coupling to electrons through the resonant production process $e^+e^- \rightarrow H$ at \sqrt{s} = 125 GeV
 - FCC-ee running at H pole-mass with 20/ab • would produce O(30.000) H's reaching SM sensitivity
 - Requires control of beam-energy spread •

One example: H(bb)

of Higgs produced: ~4M 4.8σ (VH only)

~400 5.2σ

HH at future e+e- colliders

• The self-coupling can be probed at e+e- through HH with ZHH ~500GeV and $vvHH \ge 1$ TeV • **HHvv** requires $e_L^- e_R^+$, the use of polarized beams could increase the cross-section by a factor ~2

Caterina Vernieri

<u>Review in Physics (2020) 100045</u>

Beam Generation and Delivery Systems for C³

- No positron polarization. ٠
 - No upstream polarization measurement, but • downstream polarization and energy measurement for both beams.
- Large portions of **accelerator complex are** • compatible between LC technologies
 - Beam delivery and IP modified from ILC •
 - Damping rings modified from CLIC •
 - Injectors to be optimized with CLIC as baseline •
 - There is a possibility of a high brightness, • polarized
 - RF gun which might eliminate the edamping ring, but that is not in the cost models.

C³ - Investigation of Beam Delivery Adapted from ILC/NLC

		14	00
1			
		_	

Next: C³ Demonstration Facility

		Time	Key R&D	Synergy and Spin-Offs
		Frame		
	Stage 0	Ongoing	Fundamental structure R&D with prototype structure demonstration with beam and corresponding in- dustrialization	Cost effective compact linacs for medi- cal, security and industrial applications (irradiation with electrons, x-rays)
	Stage 1	2022- 2024	Beamline and cryogenics design study for demonstrator. Cryomod- ule engineering design and raft prototyping.	High brightness electron source and photo injector feasibility. Linacs for in- jection at scientific facility (injectors, booster, capture. <i>etc.</i>)
CDR	Stage 2	2025- 2027	First high-gradient test with cryomodule. Implement one- cryomodule based linac to allow test with beam.	C ³ based next generation X-FEL, beam dynamics study including beam load- ing, compact light sources
DR	Stage 3	2027- 2029	Develop the second and third cryomodules, demonstration with beam up to full beam loading.	Future facility studies: Beam dynam- ics, positron targets, advanced concept based final focusing for linear collider, PWFA experiments <i>etc</i> .

Latest tests

Caterina Vernieri

Structure in test stand at radiabeam

Luminosity optimization

Using established collider designs to inform initial parameters

Luminosity optimization

Using established collider designs to inform initial parameters

Freq (GHz) a (mm) Charge (nC) Spacing # of bunches

Development of C³ Accelerating Structure

- Two Key Technical Advances: Distributed Coupling and Cryo-Copper RF
- Envision meter-scale accelerating structures, technology demonstration underway
- Implement most high-gradient advances

One meter (40-cell) C-band design with reduce peak E and H-field

Caterina Vernieri

Z. Li, S. Tantawi

Coupling and Cryo-Copper RF es, technology demonstration underway

Scaling fabrication techniques in length and including controlled gap

Tuned, confirmed 77K performance, first 300k high power test in progress

b/

Performance of Single-Cavity Structure Prototypes

- First high gradient test at C-band
- Side coupled, split-cell reduced peak field, reduced phase adv. •
- Exceed ultimate C³ field strengths •
- **Structure Exceeds 120 MeV/m for** LANL release single cell SLAC 500 ns @ Room Temp **C-band structure**

Caterina Vernieri

• High power in up to 1 microsecond - break down rate statistics collected and being prepared **Slot Damping Prototype** Working on NiCr Coating **BDR Data Collected**

Incoherent Pair Production

Incoherently produced pair particles are typically low-energetic and boosted in the forward direction.

- Assuming a common per-bunch-train readout scheme, the expected number of such pair particles produced per bunch train is $\langle N_{\rm incoh} \rangle \cdot n_h$.
- The energy and momentum spectra are shown assuming this normalization.

Coherent pairs/pairs from trident cascade are negligible for HFs at sub-TeV energies!

D. Ntounis, manuscript to appear soon

Transverse Momenta of incoherent pair particles

