Overview on JUNO

Liangjian Wen

Institute of High Energy Physics, CAS

2024.01.24 IAS Program on High Energy Physics (HEP 2024) @ HKUST

BE

Neutrino Oscillations

- It proved that neutrinos have non-zero masses → huge impact on particle physics & cosmology
- Neutrinos are the possible source of CP violation, which may explain the matter-antimatter asymmetry in the Universe
- After 25 years of v oscillations discovery, still unknow
 - Mass ordering ($\Delta m_{32}^2 > 0$?)
 - Leptonic CP phase (δ_{CP})
 - θ_{23} Octant
 - Very precise knowledge of oscillation parameters
 - New Physics? (sterile, ..)

Reactor Neutrinos Experiments will continue to play a critical role in solving the unknowns

(solar)

Reactor Neutrinos

- Reactor antineutrino: $\bar{\nu}_e$ emitted as fission products decay
- Commercial reactor (LEU) ²³⁵U, ²³⁸U,
 ²³⁹Pu, ²⁴¹Pu; Research HEU (²³⁵U)
- Usually detected via Inverse Beta Decay (IBD)

Current NMO sensitivity from Accelerators

Joint analysis between NOvA and T2K ongoing

Current NMO sensitivity from Atmospheric v

Mass Ordering w/ reactors

■ 'Vacuum oscillation' with reactor neutrinos → unique and complementary with accelerator/atmospheric experiments to determine neutrino mass ordering

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$

- Precision measurements of θ_{12} , Δm_{21}^2 , Δm_{32}^2
- Require huge mass and high energy resolution


```
\begin{aligned} \left| \Delta m_{ee}^2 \right| &- \left| \Delta m_{\mu\mu}^2 \right| \\ &= \pm \Delta m_{21}^2 (\cos 2\theta_{12} - \cos \beta \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23}) \end{aligned}
```


Challenges...

50 m x 70 m Exp. Hall

35.4 m acrylic sphere, vs. 13 m@ SNO

20 kton

Liquid scintillator, Borexino X40, KamLAND X20 λ>20 m, U/Th<10⁻¹⁷ g/g

20,000 20-in PMT, ε~30%

Best Light yield Borexino X2, KamLAND X5

Central Detector (SS structure)

Acrylic vessel is supported by D = 40.1 m stainless steel structure via 590 Connecting Bars

Assembly precision: < 3 mm for each grid

an all-bolted stainless steel structure, using 120,000 sets of high-strength SS short-tail grooved rivets

overall deformation ~20 mm spherical center deviation: (-2, 6, -11) mm

The platform to install the acrylic vessel

Central Detector (Acrylic Vessel)

- World-largest acrylic vessel (Φ 35.4 m, 124±4 mm thickness)
- Ultra-clean production of 265 panels
 - Curved w/ high precision & Transparency > 96%
 - Ultra-low U/Th: < 1 ppt
- Developed new bonding technology to simultaneously bond all panels in one circle

Veto Detector (water Cherenkov)

Earth magnetic shielding coils installation: 20 coils installed (32 coils in total)

Veto PMTs installed(~24% of PMT)

Tyvek reflective film installation (~500 m²)

Water system is almost ready for commissioning

35 kton of ultrapure water serving as passive shield and water Cherenkov detector.

- 2400 20-inch MCP PMTs, detection efficiency of cosmic muons larger than 99.5%
- Keep the temperature uniformity 21°C±1°C
- Quality: ²²²Rn < 10 mBq/m³, attenuation length 30~40 m

~650 m rock overburden (1800 m.w.e.) $\rightarrow R_{\mu} = 4$ Hz in LS, $\langle E_{\mu} \rangle = 207$ GeV

Veto Detector (Top Tracker)

Plastic scintillator from the OPERA experiment

- About 60% coverage on the top, three layers to reduce accidental coincidence
- All scintillator panels arrived on site in 2019
- Provide control muon samples to validate the track reconstruction and study cosmogenic backgrounds

Status:

- The TT scintillator detector is onsite
- The TT support bridge is ready for production.

Challenges for 20 kton LS

- Most transparent LS: attn. >20 m
- Ultra-low radioactivity: U/Th<10⁻¹⁷ g/g (< 10 mg dust)
- The most complex system designed and built, using four purification technologies
 - Al₂O₃ filtration
 - Distillation
 - Gas tripping
 - Water extraction

Joint commissioning ongoing

Raw material control

(LS recipe: LAB + 2.5 g/L PPO + 3 mg/L bis-MSB)

- Highly transparent LAB: $\lambda_{attn} \sim 22-23 \text{ m}$
- Ultra-low radioactivity PPO: U/Th<0.1 ppt
- Ultra-pure water for liquid-liquid extraction: <10⁻¹⁶ g/g

Need be achieved in the first place, otherwise online circulation is difficult

A 20-t detector to monitor radiopurity of LS before and

during filling to the central detector

- Few days: U/Th (Bi-Po) ~ 1 × 10⁻¹⁵ g/g (reactor baseline case)
- 2~3 weeks: U/Th (Bi-Po) ~ 1×10^{-17} g/g (solar ideal case)
- Other radiopurity can also be measured: ¹⁴C, ²¹⁰Po and ⁸⁵Kr

Commissioning ongoing

Eur. Phys. J. C 81 (2021) 11, 973

Possible upgrade to Serappis (SEarch for RAre PP-neutrinos In Scintillator): arXiv: 2109.10782

✓ A precision measurement of the flux of solar *pp* neutrinos on the few-percent level

Photomultiplier Tubes

Synergetic 20-inch and 3-inch PMT systems to ensure energy resolution and charge linearity

Clearance between PMTs: 3 mm → Assembly precision: < 1 mm w/ protection cover (JINST 18 (2023) 02, P02013)

~7200 LPMT and ~9300 SPMT have been installed

Eur. Phys. J. C 82 (2022) 12

Photomultiplier Tubes

All PMTs produced, tested, and instrumented with waterproof potting

12.6k NNVT PMTs with highest PDE are selected for light collection from LS

and the rest are used in the Water Cherenkov detector.

32

Photomultiplier Tubes

All PMTs produced, tested, and instrumented with waterproof potting

12.6k NNVT PMTs with highest PDE are selected for light collection from LS

and the rest are used in the Water Cherenkov detector.

		LPMT (20-ir	SPMT (3-inch)	
		Hamamatsu	NNVT	HZC
Quantity	У	5000	15012	25600
Charge Colle	ction	Dynode MCP Dyn		Dynode
Photon Detection Efficiency		28.5%	30.1%	25%
Mean Dark Count	Bare	15.3	49.3	0.5
Rate [kHz]	Potted	17.0	31.2	0.5
Transit Time Spread (σ) [ns]		1.3	7.0	1.6
Dynamic range for	[0-10] MeV	[0, 100] PEs		[0, 2] PEs
Coverag	e	75%		3%
Referenc	e	arXiv: 2205.08629		NIM.A 1005 (2021) 165347

Failure rate requirement: <0.5% in 6 yrs, while same for underwater Elec.

Electronics

3 20-inch PMTs connected to one underwater box

128 3-inch PMTs connected to one underwater box

- 6862 boards produced and tested before installation
- Ongoing test campaign during installation
- Careful design & excellent grounding: noise level: 4% at 1 photoelectron better than specs: 10% at 1 p.e.

Calibration

1D,2D,3D scan systems with multiple calibration sources to control the energy scale,

detector response non-uniformity, and < 1% energy non-linearity

Cable system prototype

Shadowing effect uncertainty from Teflon capsule of radioactive sources: < 0.15%

JUNO

Background Control

Environmental Radon control

- Large amount of underground water at JUNO site: 450 m³ /h with 120,000 Bq/m³ radon in water → underground water is a large radon source
- Continuous improvement of ventilation → radon in Exp-Hall reduce to 100-200 Bq/m³
- Materials control & cleanness → <7.2 Hz in FV (spec: 10 Hz)
 - LS (LAB, PPO, bisMSB)
 - Acrylic
 - PMT glass
 - SS Struss
 - PMT readout Electronics
 - Ultra-pure water (micro-bubbling tech.)

Cleanness control during installation & Filling

LS

WP

Physics sensitivities

For topics not covered here, please refer to PPNP 123 (2022) 103927

Several IBDs per day

...........

Earth

Hundreds per day

Solar

Neutrino oscillation & properties

per day

~5000 IBDs for CCSN @10 kpc

Neutrinos as a probe

physics

New

IBD: inverse beta decay CCSN: core-collapse supernova DSNB: Diffused Supernova Neutrino Background

	Design *	Now
Thermal Power	36 GW _{th}	26.6 GW _{th} (26% ↓)
Overburden	~700 m	~ 650 m
Muon flux in LS	3 Hz	4 Hz (33% ↑)
Muon veto efficiency	83%	91.6% (11% ↑)
Signal rate	60 /day	47.1 /day (<mark>22%</mark> ↓)
Backgrounds	3.75 /day	4.11 /day (<mark>10%</mark> ↑)
Energy resolution	3% @ 1 MeV	2.95% @ 1 MeV
Shape uncertainty	1%	JUNO+TAO
3σ NMO sens. exposure	< 6 yrs $ imes$ 35.8 GW _{th}	~ 6 yrs × 26.6 GW _{th}

* J. Phys. G 43:030401 (2016)

- JUNO NMO sensitivity: **3σ (reactors only)** @ ~6 yrs * 26.6 GW_{th} exposure
- Combined reactor + atmospheric neutrino analysis is in progress: further improve the NMO sensitivity

NMO synergy at JUNO

Neutrino oscillation parameters w/ reactors

JUNO

The improvement in precision over existing constraints will be about one order of magnitude except for θ_{13}

Fine Structures in the Spectrum (JUNO-TAO)

Ratio

- Taishan Antineutrino Observatory (TAO), a ton-level, high energy resolution LS detector at 30 m from the 4.6 GW_{th} core, a satellite exp. of JUNO.
- Measure reactor neutrino spectrum w/ high E resolution.
 - Model-independent reference spectrum for JUNO
 - A benchmark for testing the nuclear database •

Detector Features

- 2.8 ton Gd-LS, 10 m² SiPM (84.6% photocathode coverage) w/ PDE > 50%
- Operate at -50 °C (suppress SiPM dark noise)
- 4500 p.e./MeV, <2% resolution @ 1MeV
- **Expected online in 2024**

Geo-neutrino sensitivity

- ~400 geo-v/year (based on GLOBAL model)
- Significant updates since <u>YB</u> & <u>PPNP 123, 103927 (2022)</u>
 - Same updates as for NMO and precision measurement
 - Updated geo-v model, e.g., JULOC(-I) predict ~30% more v
 - Updated detector inputs, spectrum uncertainties
- Expected precision for U+Th, U, Th, Th/U ratio and mantle obtained
- Mantle discovery potential is under ongoing
 - Mantle = Total Geonu Measurement Lithosphere Prediction

Expected geone (assuming Th/U ma	eutrino precision ass ratio fixed to 3.9)	
1 year	~22%	
6 years ~10%		
10 years	~8%	

	6 years	10 years
²³² Th:	~40%	~35%
²³⁸ U:	~35%	~30%
²³² Th+ ²³⁸ U:	~18%	~15%
²³² Th/ ²³⁸ U ratio:	~70%	~55%

JULOC: <u>1903.11871</u>, JULOC-I: <u>2210.09165</u> Longitude

Core-collapse Supernova Neutrinos (CCSN)

Multi-channel detection, all flavors of CCSN:

~5000 IBD, ~300 eES, ~2000 pES, ~200 ^{12}C CC, ~300 ^{12}C NC @10 kpc

Other physics Potentials

- Neutrino mass ordering : using MSW matter effect, pES channel to anchor the bounce time
- Absolute neutrino masses: probing the mass of v_x (rather than v_e) with pES channel, or absolute masses from black hole forming CCSNe
 Important effects: Model dependency and Threshold

Allow model-independent reconstruction of the energy spectra of $\overline{\nu}_e$, ν_e , ν_x via unfolding approach \rightarrow

Full chain Monte Carlo analysis ongoing

Garching group, 1D simulation, LS220 EoS, 27 solar mass

Core-collapse Supernova Neutrinos (CCSN)

- Excellent capability of early warning
- CCSN
 - reach 220 ~ 400 kpc w/ 50% prob.
 - alert in 10 ~ 30 ms for typical 10 kpc
- pre-SN:

60°

-60°

-120°

30°

-30°

0°

- reach 0.6 ~ 1.7 kpc w/ 50% prob.
- >~ 100 hr in advance if 0.2 kpc

Diffused Supernova Neutrino Background (DSNB)

DSNB: 2-4 events in JUNO per year

$\checkmark\,$ Not detected yet

Holding:

- Supernova (SN) rate (*R_{SN}*(0))
- Average energy of SN neutrinos $(\langle E_{\nu} \rangle)$
- Fraction of black hole (*f*_{BH})
- Dominant background (above 12 MeV):
 ✓ Atm-v NC interactions
- Highlights on background suppression
 - ✓ Muon veto
 - ✓ Pulse shape discrimination (PSD) technique
 - ✓ Triple coincidence (¹¹C delayed decay)

Improvements compared to JUNO physics book J. Phys. G43:030401(2016):

- ✓ **Background evaluation:** 0.7 per year → 0.54 per year
- ✓ **PSD:** signal efficiency 50% \rightarrow 80% (1% residual background)
- Realistic DSNB signal model: non-zero fraction of failed Supernova

arXiv: 2205.08830, JCAP 10 (2022) 033

If no positive observation, JUNO can set the world-leading best limits of DSNB flux

• With the nominal model (black solid curve (left plot)): 3σ (3 yrs) and 6σ (10 yrs)

Sensitivities to Intermediate energy solar ν

- Improving the understanding of neutrinoemitting solar processes, significant better precision on ⁷Be, pep
- First **CNO** measurement without external constraints

[2303.03910] JCAP 10 (2023) 022

 $\Delta \chi^2$

Model independent measurement of ⁸B-v flux (~5%) and oscillation parameters

Nucleon Decay

$$p \to K^+ + \overline{\nu}$$

Prompt pulse

$$\tau = \begin{bmatrix} K^+ \rightarrow \nu_{\mu} + \mu^+ \\ 12.4 \text{ns} \\ \hline \text{Delayed pulse} \\ K^+ \rightarrow \pi^+ + \pi^0 \\ \tau = \begin{bmatrix} 26 \text{ns} \\ \pi^+ \rightarrow \nu_{\mu} + \mu^+ \end{bmatrix} 2\gamma$$

- Signature: three-fold coincidence
- **Dominant background:** atmospheric neutrino interactions

Type	Ratio (%)	Ratio with E_{vis} in [100 MeV, 600 MeV](%)	Interaction	Signal characteristics
NCES	20.2	15.8	$ \begin{array}{l} \nu + n \rightarrow \nu + n \\ \nu + p \rightarrow \nu + p \end{array} $	Single Pulse
CCQE	45.2	64.2	$ \bar{\nu_l} + p \rightarrow n + l^+ $ $ \nu_l + n \rightarrow p + l^- $	Single Pulse
Pion Production	33.5	19.8	$ \begin{array}{c} \nu_l + p \rightarrow l^- + p + \pi^+ \\ \nu + p \rightarrow \nu + n + \pi^+ \end{array} $	Approximate Single Pulse (Second pulse too low)
Kaon Production	1.1	0.2	$ \begin{array}{l} \nu_l + n \rightarrow l^- + \Lambda + K^+ \\ \nu_l + p \rightarrow l^- + p + K^+ \end{array} $	Double Pulse

- Multiplicity, spatial distribution of Michel e- and neutrons
- Expect sensitivity: 9.6×10³³ years (90%
 C.L.) for 193 kton*yrs fiducial exposure

Super-K (2014): >5.9 × 10³³ yrs @ 260 kton⋅yrs

Physics Potentials with JUNO

JUNO has great potentials on the physics topics below, although except for CP phases, θ_{23} Octant

Exp.	Time	Mass ordering	CP phases	Precision Meas.	CCSN burst @ 10 kpc	DSNB	Geo-v	Solar	Proton Decay (sensitivity@10 y)
JUNO (20 kt)	2024	<mark>3-4 σ</mark> 6 y		$\sin^2 heta_{12}$ (0.5%), Δm^2_{21} (0.3%), Δm^2_{31} (0.2%), 6 y	all-flavor v (IBD, eES, pES)	<mark>Зо</mark> , 3 у	~400/y	⁷ Be, pep, CNO, ⁸ B	> 9.6x10 ³³ y (⊽ <i>K</i> +)
DUNE (17 kt*4)	2030	>5 σ 1-3 γ	5σ (50%) <i>10 y</i>	Δ m^2_{32} ~0.4%, sin² $ heta_{23}$ ~1.1% *, 15 y	⁴⁰ Ar CC & NC, eES	⁴⁰ Ar CC	_	⁸ B, hep	$\frac{>8.7 \times 10^{33} \text{ y (} e^+ \pi^0 \text{)}}{>1.3 \times 10^{34} \text{ y } (\bar{\nu}K^+)}$
HyperK (260 kt)	2027	3-5 σ 10 y	5σ (60%) 10 y	Δ m^2_{32} ~0.6%, sin² $ heta_{23}$ ~1.6% *, 10 y	eES, IBD	<u>3σ, 6 y</u>	—	⁸ B, hep	$\frac{>7.8 \times 10^{34} \text{ y } (\text{e}^+ \pi^0)}{>3.2 \times 10^{34} \text{ y } (\overline{\nu} K^+)}$
ORCA (7 Mt)	Un- known	2-4 σ 3 y		Δm^2_{32} ~2% , 3 y	rate excess			_	
IceCube Upgrade	2026	2-4 σ 7 y		Δm^2_{32} ~1.3% , 3 y	rate excess			_	

* Upper octant assumption

JUNO's future update

- JUNO offers an unique opportunity to search for 0vββ after completion of mass ordering measurements (~2030)
 - Large target mass: 20 kton LS → 100-ton scale isotope loading (e.g., Tellurium, no enrichment, cost effective)
 - Excellent clean LS shielding → Low background
 - Energy resolution < 3% @ 1 MeV
 - Potential to explore normal mass ordering parameter space of Majorana neutrino mass.
 <u>Snowmass2021 LOI</u>
- Critical R&D in progress
 - Te-loaded LS (requirements: high light yield, transparency and solubility and stability)
 - Background rejection (⁸B solar neutrinos, Te muon-spallation products)
 - Xenon enrichment w/ a company, aiming at 200 kg/yr

Concept of the experiment

- Revealing the mysteries of neutrinos are extremely important for understanding the two infinities: particle physics and cosmology
- Neutrino oscillation studies entered a precision era, and there are still many unknowns about fundamental properties of neutrinos (mass ordering, Majorana nature, absolute mass, CP-violating phases, etc)
- JUNO has great potential on solving some of the problems. Its construction going on well. Expect first data in 2024.

Stay tuned!

ESCALE=extent EYE=-10,0,0 TMIN=0.1 MOI=sChimneyAcrylic:0:-2 ZOOM=0.5 CAM=perspective ~/opticks/CSGOptiX/cxr_min.sh PIP td:1 pv:2 av:2 WITH_PRD

Courtesy: S. Blyth, T. Lin, Y. X. Hu Opticks : GPU Optical Photon Simulation

0.0110 0:Quadro_RTX_8000

Sat Jan 20 16:24:26 CST 2024

Reactor Antineutrino Oscillation

$$\begin{split} P(\overline{\nu}_e \to \overline{\nu}_e) \ &= \ 1 - \sin^2 2\theta_{12} \cos^4 \theta_{13} \sin^2 \frac{\Delta m_{21}^2 L}{4E} \\ &- \frac{1}{2} \sin^2 2\theta_{13} \left[\sin^2 \frac{\Delta m_{31}^2 L}{4E} + \sin^2 \frac{\Delta m_{32}^2 L}{4E} \right] \\ &- \frac{1}{2} \cos 2\theta_{12} \sin^2 2\theta_{13} \sin \frac{\Delta m_{21}^2 L}{4E} \sin \frac{(\Delta m_{31}^2 + \Delta m_{32}^2) L}{4E} \end{split}$$

(matter effect contributes maximal ~4% correction at around 3 MeV, *arXiv:1605.00900, arXiv:1910.12900*)

Illustration: Daya Bay Conversion Probability Curtesy: Jihong Huang, Zhi-zhong Xing

Updated reactor neutrino models

IUNO

Energy Resolution (current understanding)

Change	Light yield in detector center [PEs/MeV]	Energy resolution	Reference
Previous estimation	1345	3.0% @1MeV	JHEP03(2021)004
Photon Detection Efficiency (27%→30%)	+11% ↑		arXiv: 2205.08629
New Central Detector Geometries	+3% ↑	2.95% @ 1MeV	
New PMT Optical Model	+8% ↑		EPJC 82 329 (2022)

- Scintillation quenching effect
 - LS Birks constant from table-top measurements
- Cherenkov radiation

JUNO

- Cherenkov yield factor (refractive index & re-emission probability) is re-constrained with Daya Bay LS non-linearity
- Detector uniformity and reconstruction

Strategy of measuring the energy resolution with calibration data is developed

Reactor Antineutrino Spectrum from TAO

- Precisely measure the unoscillated reactor \bar{v}_e spectrum
- ➔ good understanding of the shape uncertainty
- ➔ model-independent combined analysis with JUNO
- Also search for sterile neutrinos and measure spectra of dominant isotopes

Improvements on atmospheric neutrino analysis

	Yellow Book assumptions	NEW developments	Potential improvement	0.45 5 0.4
Event Selection $ u_{ m e}/v_{ m e} $	E _{vis} > 1GeV Y _{vis} =E _h /E _{vis} < 0.5	E _{vis} > 1GeV	~30% more stats.	
Directionality	$\sigma_{\theta\mu} = 1^{\circ}$ $\sigma_{\theta\nu} = 10^{\circ}$	σ_{θν} <10° (E>3GeV)	Better resolution; E-dependent	0.15 0.1 2×10 ⁻¹ 1 2 3 4 5 6 7 8 10 E _{vis} [GeV]
	CC-e / CC-μ / NC: 100% eff.	CC-e / CC-μ / NC: 80%~95% eff.		25 (b) v_e 20 20 20 20 20 20 20 20 20 20
Classification	$\nu \text{ vs } \overline{\nu}$: simple classification with N _{michel-e} , Y _{vis}	ν vs	Better ν vs $\overline{\nu}$ separation	
Energy	$\sigma_{\rm Evis}$ = 1%/VE	$\sigma_{E u}$	E_{ν} instead of E_{vis}	0 1 3 E _ν (GeV)

Invisible nucleon decay search

Triple-coincidence signatures from excited ¹¹C^{*}, ¹⁰C^{*} nuclei after Invisible decay of bounded neutron(s) in ¹²C

IUNC

• Analyses ongoing, preliminary results show significantly better sensitivity than the current experimental limits

Decay	sensitivity or limit (90% CL) [yr]					
mode	JUNO (10 yrs)	SNO+	KamLAND			
$n \rightarrow inv$	$1.1 imes 10^{31}$	2.5×10^{29}	5.8×10^{29}			
nn → inv	$1.5 imes 10^{32}$	1.3×10^{28}	1.4×10^{30}			
		PRD99.032008 ~235 days	PhysRevLett.96.101802 ~750 days 45			

Indirect Dark Matter Search

- DM annihilation into neutrinos in the Milky Way
- DM masses: 15 100 MeV
- Detection channel in JUNO: Inverse Beta Decay
- Backgrounds: atm-v NC/CC, DSNB, fast neutron, reactor
 - PSD technique to suppress atm-v NC and fast neutron

