

Status and Prospects of the Hyper-Kamiokande Experiment

Bedřich Roskovec Charles University, Prague on behalf of the Hyper-Kamiokande collaboration

IAS Program on High Energy Physics 2024 **HKUST**, Hong Kong 24 January 2024

- Second most abundant particle in the universe
- Odd particle of the Standard Model
 - Very light compared to the other particles ullet
 - Non-zero mass does not originate from the interaction with the Higgs \bullet → evidence of the physics beyond the Standard Model
- Neutrinos come from various sources with broad range of energies
 - Bearers of key information lacksquare
- **Understanding the neutrinos**

Understanding the universe

Neutrinos

Status and Prospects of Hyper-K

2

Neutrino mixing: Flavor states ≠ Mass states $|\nu_e\rangle = \cos\theta |\nu_1\rangle + \sin\theta |\nu_2\rangle$ $|\nu_{\mu}\rangle = -\sin\theta |\nu_{1}\rangle + \cos\theta |\nu_{2}\rangle$

B. Roskovec - Charles University

yper-K

Disappearance Channel

$$(E) = 1 - \frac{\sin^2 2\theta}{\sin^2 \frac{\Delta m^2 L}{4E}}$$

$$\nu_e + P_{\nu_e \to \nu_\mu} = 1$$

Appearance Channel

$$L, E) = \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$$

Oscillation essentials:

- Probability oscillation in L/E ullet
- Mass squared difference lacksquare $\Delta m^2 \equiv m_1^2 - m_2^2$
 - drives the frequency
- Mixing angle θ - drives the amplitude

Neutrino Mixing and Oscillation (3v)

Three-neutrino mixing matrix:

Atmospheric, accelerator v

Flavor states

Reactor L~2 km, accelerator v

B. Roskovec - Charles University

Solar, reactor L~60 km v

$$\begin{pmatrix} i\delta \\ -s_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Mass ν_2 states ν_3

c_{ij}=cosθ_{ij} $s_{ij} = sin\theta_{ij}$ $\Delta m^2_{ij} \equiv m^2_i - m^2_i$

Value	Precision
47°	3.8%
2.44×10 ⁻³ eV ²	1.4%
34°	4.2%
7.53×10 ⁻⁵ eV ²	2.4%
9°	2.8 %
~-π/2	~30%

Reactor L~2 km, accelerator v

B. Roskovec - Charles University

Open Questions

Value	Precision
47°	3.8%
2.44×10 ⁻³ eV ²	1.4%
34°	4.2%
7.53×10 ⁻⁵ eV ²	2.4%
9°	2.8 %
~-π/2	~30%

Open questions in v-physics:

• θ_{23} octant $\Leftrightarrow \theta_{23} \ge 45^{\circ}$?

Atmospheric, accelerator v

Flavor states

Reactor L~2 km, accelerator v

Open Questions

Value	Precision
47°	3.8%
2.44×10 ⁻³ eV ²	1.4%
34°	4.2%
7.53×10 ⁻⁵ eV ²	2.4%
9°	2.8 %
~-π/2	~30%

- θ_{23} octant $\Leftrightarrow \theta_{23} \ge 45^{\circ}$?
- Mass ordering ${\bullet}$

Atmospheric, accelerator v

Flavor states

$\langle \nu_e \rangle$	/1	0	0 \	$\int c_{13}$	0	$s_{13}e^{-}$
$\nu_{\mu} =$	0	C_{23}	s_{23}	0	1	0
ν_{τ}	$\setminus 0$	$-s_{23}$	$c_{23}/$	$\sqrt{-s_{13}}e^{i\delta}$	0	c_{13}

Reactor L~2 km, accelerator v

B. Roskovec - Charles University

Open Questions

Value	Precision
47°	3.8%
2.44×10 ⁻³ eV ²	1.4%
34°	4.2%
7.53×10 ⁻⁵ eV ²	2.4%
9°	2.8 %
~-π/2	~30%

- θ_{23} octant $\Leftrightarrow \theta_{23} \ge 45^{\circ}$?
- Mass ordering ${\bullet}$
- Value of the δ_{CP} •

Atmospheric, accelerator v

Flavor states

Reactor L~2 km, accelerator v

Open Questions

Value	Precision
47°	3.8%
2.44×10 ⁻³ eV ²	1.4%
34°	4.2%
7.53×10 ⁻⁵ eV ²	2.4%
9°	2.8 %
~-π/2	~30%

- θ_{23} octant $\Leftrightarrow \theta_{23} \ge 45^{\circ}$?
- Mass ordering
- Value of the δ_{CP}
- Absolute mass scale
- Are v's Dirac or Majorana nature?

Atmospheric, accelerator v

Flavor states

$\langle \nu_e \rangle$		/1	0	0 \	7	c_{13}	0	$s_{13}e^{-}$
$ u_{\mu}$	=	0	C_{23}	s_{23}		0	1	0
$\left(\nu_{\tau}\right)$		$\setminus 0$	$-s_{23}$	c_{23}		$-s_{13}e^{i\delta}$	0	c_{13}

Reactor L~2 km, accelerator v

Open Questions

Value	Precision
47°	3.8%
2.44×10 ⁻³ eV ²	1.4%
34°	4.2%
7.53×10 ⁻⁵ eV ²	2.4%
9°	2.8 %
~-π/2	~30%

- θ_{23} octant $\Leftrightarrow \theta_{23} \ge 45^{\circ}$?
- Mass ordering
- Value of the δ_{CP}
- Absolute mas will be addressed by re v's Dirac • Are v's Dirac omajorana nature?

The Hyper-Kamiokande Experiment

- International multipurpose experiment under construction in Japan long baseline neutrino oscillation as well as non-accelerator physics
- The world's most-intense neutrino beam from J-PARC (ultimately 1.3 MW)
- Near detectors to control the systematics (@J-PARC):
 - INGRID & ND280 (common with T2K) further improved with upgrades lacksquare
 - Intermediate Water Cherenkov detector newly built movable detector
- Hyper-Kamioaknde (far) detector will be the largest neutrino and nucleon decay detector in the world with 260 kt of water (@Kamioka)

B. Roskovec - Charles University

The Hyper-Kamiokande Collaboration

About 560 scientists from 103 institutions from 22 countries

Physics Program in a Nutshell

Atmospheric neutrinos

 $v_{e}, \bar{v}_{e}, v_{\mu}, \bar{v}_{\mu}$

Accelerator neutrino from J-PARC

B. Roskovec - Charles University

Supernova neutrinos

- 99% of the gravitational energy released in v's with energy up to ~50 MeV
- Supernova burst neutrinos 54k-90k events in HK for supernova @10 kpc
 - Distinguishing explosion mechanism through time and energy spectra (ApJ 916 15 2021) \bullet
 - Event alert with $\sim 1^{\circ}$ direction precision multi-messenger astronomy \bullet
- Supernova relic neutrinos not yet observed determine the past stellar collapse rate
 - ullet

Neutrino Astrophysics - Supernova Neutrinos

Detection through inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$ - neutron tagging efficiency key aspect

- So-called up-turn (transition between MSW-vacuum oscillations) sensitive to various (non)standard parameters
 - Current tension between standard prediction and measurements \bullet
 - High-precision measurement by among others Hyper-Kamiokande separates between statistical \bullet fluke and other non-standard physics
- Hyper-K will further probe day/night asymmetry and measure high-energy solar neutrino flux (hep)

Neutrino Astrophysics - Solar Neutrinos

- "Golden" channel $p \rightarrow e^+ + \pi^0$

Nucleon Decay Search

Status and Prospects of Hyper-K

Year

- The $p \rightarrow K^+ + \bar{\nu}$ channel preferred by Supersymmetry theories
- Kaon decay signatures:
 - $K^+ \rightarrow \mu^+ + \nu_{\mu}$ (BR 64%) produces a mono-energetic 258 MeV muon and ¹⁵N* de-excitation gamma \rightarrow prompt-delayed signal coincidence greatly suppresses the background
 - $K^+ \rightarrow \pi^+ + \pi^0$ (BR 21%) with a clear kinematic&topology pattern
- in this channel in about a year of data taking

- The narrow spectrum of 2.5° off-axis $\nu_{\mu}/\bar{\nu}_{\mu}$ beam peaks at 0.6 GeV (tuned to 295 km baseline)
- Strategy for the CP violation measurement comparison of $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$
- Example for δ_{CP} =-90°: probability enhancement for neutrinos vs. suppression for antineutrinos
- High statistics measurement (1.3 MW beam + huge HK det.) with ~2k events both for ν_e and $\bar{\nu}_e$ (1:3)
- Improved systematics with new/upgraded near detectors

B. Roskovec - Charles University

Accelerator Neutrino Long Baseline Measurement

	μ -I	ike		e	e-like	
Error model	u-mode	$\overline{\nu}$ -mode	ν -mode	$\bar{\nu}$ -mode	u-mode	$\mid u/\overline{ u}$ n
			0 d.e.	0 d.e.	1 d.e.	0 d
T2K 2020	3.0%	4.0%	4.7%	5.9%	14.1%	4.6
Improved	1.2%	1.1%	2.1%	2.2%	5.2%	2.0

Expected event rate @ 10 years (2.7E22 POT), $\nu:\bar{\nu} = 1:3, @ \delta_{CP} = 0$

$ u$ -mode, I-ring μ -like	\sim i
$ar{ u}$ -mode, 1-ring μ -like	${\sim}1$
u-mode, 1-ring <i>e</i> -like + 0 decay <i>e</i>	~ 2
$\bar{\nu}$ -mode, 1-ring <i>e</i> -like + 0 decay <i>e</i>	\sim
u-mode, 1-ring <i>e</i> -like + 1 decay <i>e</i>	\sim

- Excluding CP conservation for 62% of δ_{CP} parameter space $@5\sigma$ in 10 y (assuming know mass ordering)
- Improved systematics has great impact

Hyper-K preliminary True normal ordering (known), 10 years $(2.7 \times 10^{22} \text{ POT } 1:3 \text{ v}:\overline{v})$ $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m_{32}^2=2.509\times10^{-3}eV^2/c^4$

CP Violation Sensitivity

- **20.2°** error at true δ_{CP} =-90°
- 6.3° error at true $\delta_{CP}=0^{\circ}$

Sensitivity for Other Oscillation Parameters

Atmospheric Neutrinos

- - ullet
 - \bullet true value of θ_{23} (>3 σ in 6 y)

B. Roskovec - Charles University

Physics Program Summary

	Physics	Parameter	Sensitivity
		δ CP precision	7-20 °
	Long baseline v (1.3 MW × 10 v)	δ _{CP} coverage (3/5σ)	76%/58%
		sin ² θ ₂₃ error (for 0.5)	±0.017?
30 660 m Scondary Conner ray 20 660 m L L L L	Atm. v + LBL v	Mass ordering	>3.8σ
10 coo e	(10 y)	θ ₂₃ octant (3σ)	lθ ₂₃ -45°l>2°
		SN burst @ 10 kpc	54k-90k v's
	Supernova v	SN Relic v (10 y)	~70 v's
	Solar v	Upturn	>3σ
	(10 y)	Day/Night asymmetry	8σ
	Proton decay (20 y)	т for p→e+π ⁰ (3σ)	1×10 ³⁵ y
		τ for p→K+v (3σ)	3×10 ³⁴ y

B. Roskovec - Charles University

E	A A
MATH	
4	A

- Construction: 2020-2027 on time i sta
- Operation: 2027 -

	JFY20)20	JFY2021	JFY2022	JFY2023
	Preparatic	on	Tunnel const.	e	Cavern excavation
					PMT production
					PMT
				Power-upgrade	of J-PARC and
			Near D	etector Facility,	R&D, production

Schedule

J-PARC Beam Upgrade

J-PARC

MR-RF cavities

Main Ring Circumference 1.567.5 m K.E.: 3 GeV \rightarrow 30 GeV **97.1%** → **99.95% v/c:**

320kA horn operation

Neutrino Exp. Facility

Achieved 515 kW in JFY2020 Aiming 1.3 MW by JFY2028

B. Roskovec - Charles University

- Near detectors common with T2K upgrades planned for T2K and Hyper-K
- On-axis detector INGRID measures beam direction and monitors flux
- Off-axis detector ND280 primary measures (anti)neutrino rate and spectrum, magnetized to separate wrong-sign background
- Upgrade for/by T2K: P0D replaced by ●
 - Super fine-grained detector
 - High-angle TPCs
 - Time-of-flight planes
- Further upgrades for Hyper-K era ulletunder investigation

Near Detectors

- Newly constructed movable (1°to 4° off-axis) 1 kt water Cherenkov detector at ~1 km from target
- Instrumented with 400 multi-PMT modules
 - 19 8 cm PMTs, dedicated fast electronics, etc.
 - High granularity and superb time resolution ullet
- Precise cross-section measurement
 - Same target material and detection technique as Hyper-K \bullet
 - Reduction of dominant systematics of $\nu_e/\bar{\nu}_e$ interaction cross section ulletND280+IWCD complementary reduce the systematics ≤3% (alone $\leq 7.5\%$ and $\leq 3.7\%$ respectively)
- Precise measurement of the (anti)neutrino spectrum
 - Sampling at different off-axis angles to get a spectrum prediction for the Hyper-Kamiokande far detector

Intermediate Water Cherenkov Detector

Far Detector - 3rd Generation of Successful Experiments

Hyper-Kamiokande: 2027-onwards

- Extend nucleon decay search
- Precision measurement of neutrino oscillation Determination of CP violation and mass ordering, ...
- Unknown unknowns?

Super-Kamiokande: 1996-now

- World's best limit on nucleon decay
- Discovery of neutrino oscillation

Kamiokande: 1983-1996

- Atm. and solar neutrino "anomaly"
- Neutrino from Supernova 1987A

H16m × Ø15.6

Far Detector Civil Construction on Schedule

B. Roskovec - Charles University

Hyper-Kamiokande Far Detector Overview

- 260kt water Cherenkov detector
 - 1700 m.w.e. underground
 - Inner detector (ID) H64.8 m × Ø65.8 m
 - Fiducial mass of 190 kt (8.4×SK)
 - Outer detector (OD) 1m/2m thick

B. Roskovec - Charles University

- 20k 50 cm PMTs
- Main detection system of ID
- 20% photo-coverage
- ~800 mPMTs modules
- Direction and time resolution
- Direct/scattered light
- 3600 OD modules
- 8cm PMT and WLS plate
- Provides veto agains muons
- Underwater electronics vessels
- ID & Hybrid (ID+OD) vessel
- mPMT signal-collecting vessel

- Hamamatsu Photonics R12860 Box&Line dynode PMTs
 - ×2 better photon detection efficiency
 - ×2 better single photoelectron resolution lacksquare
 - ×2 better time resolution \bullet
 - ×2 higher pressure tolerance \bullet
- (all w.r.t. SK Hamamatsu R3660)

- Low dark rate of 4 kHz
- Production resumed 6000+ delivered and tested @Kamioka
 - Previous issues due to flashers successfully resolved

B. Roskovec - Charles University

50 cm PMTs

Underwater Electronics

- Underwater electronics to reduce the cable length (signal quality, cost) El. vessel includes low-voltage & high-voltage power supply,
- data processing board, digitizer board
- Two configurations:
 - ID vessel services 24 ID PMTs \bullet
 - Hybrid (ID+OD) vessel services 20 ID PMTs and 12 OD modules \bullet
- Long-term underwater test conducted at CERN

Far Detector Calibration

- Great experience from Super-K
- Calibration through optical&radioactive sources and control sample
- Pre-calibration: calibrated PMTs and photogrammetry
- **Regular calibration**
 - Light injection through diffusers and collimators lacksquare
 - mPMT flashing LEDs \bullet
 - Outer detector light injectors lacksquare
- Electron LINAC: 3-24 MeV electrons
- Radioactive sources
 - DT source \bullet
 - AmBe+BGO tagged neutrons
 - Ni/Cf 9 MeV y cascade lacksquare

Light Injector

DT Source Principle

- Hyper-Kamiokande is a 3rd generation water Cherenkov experiment @ Kamioka
 - World's largest accelerator long baseline neutrino oscillation and nucleon decay detector lacksquare
 - Built on well-proven technology lacksquare
- Upgrade of the near detectors + introduction of the Intermediate Water Cherenkov Detector to reduce systematics
- Construction on time and on the way to start operation in 2027
- Many results in 20 years of data taking
 - CP violation in neutrino oscillation discovery for 62% of true δ_{CP} @5 σ \bullet
 - Nucleon decay explored up to $\tau > 10^{35}$ y \bullet
 - A lot more...

Conclusions

CP Conservation Exclusion with Time

Atm. + LBL Both Orderings

