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» Axions are periodic pseudo-scalars 6 ~ 6@ + 2x that couple to the instanton
density of gauge fields
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* They provide a compelling solution to the Strong CP problem.

 They are also a promising candidate for dark matter.

* Theoretically, they are found ubiquitously in string theory.
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Axion-SM

* |n this talk, we will consider the simplest model for QCD axion.

* A single axion field coupled to the Standard Model (SM) gauge fields
(F5, I, Fp) € su(3) X su(2) X u(l)y
K3 K K

1
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» The axion-gauge couplings K; should be quantized.

« Simpler case: a single axion coupled to SU(N) gauge field:
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 Since the axion field @ is 27 periodic, @ — @ + 2z should leave the path integral

invariant, which transforms as e¢*® — e®e*™K \ith n the instanton number

|
n=J ITrFANFe”/Z
Q12

Hence, the coupling has to be quantized: K € Z.
» Naively, the axion coupling to the SM should be quantized similarly as K. € Z.
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» However, there is a twist due to an ambiguity in the
* |t is commonly stated that the SM gauge group is
G =SUQB)xSU®2)x U(l)y
 But the Z center generated by
ezm'/313x3 ®-1,,® o 27il6
acts trivially on all of the SM fields
qg: 3,2),, [: (1,2)_; H: (1,2)_;
i (3, 1)_4 d: (3, 1), e: (1,1).¢
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* Possible SM gauge group [Tong 2017]

SUB) X SU2) x U(1
sz C=27. 7.7, 1

 Example:
« SU(S), Spin(10), E, GUT models give ' = Z

 The minimal KSVZ axion model contains fermions that only charged under
SU(3) so it is only compatible with "= Z, orI" = 1.

* Which one describes our world? How does it affect the physics of QCD axion?

o \What is the difference between different choices of 1 ?
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» Simpler case: SU(N) v.s PSU(N) = SU(N)/ Z,, pure gauge theories (no axions).

 These two theories share the same correlation functions of local operators.
However, they have different line operators. |[Aharony,Seiberg, Tachikawa 201 3]

* Wilson lines: worldlines of electric probe particles

Wi = TrpP exp (zJ A, dx/")

R: representation of the gauge group

We can assign every SU(N) rep an electric charge z, € Z,, under the Z,, center.

SUN):z,=1,...,N mod N PSUN):z,=0 mod N
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’t Hooft Lines

e 't Hooft lines: worldlines of magnetic probe particles
Similarly, we can assign every 't Hooft line a magnetic charge z,, € Z,
The spectrum of ’t Hooft lines are determined by the Dirac quantization condition
z,Xz, =0 mod N
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PSU(N) theory has less Wilson lines but more 't Hooft lines.

Figures are taken from [Aharony,Seiberg, Tachikawa 2013]
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Fractional Instantons

* The two theories also differ in the quantization of their instanton numbers.

1
n = —JTrF/\F
Q12

« PSU(N) gauge theory contains fractional instantons

|
SUN): ne ”/ PSU(N): n € NZ

e The @ angle is 27z periodic in SU(N ) and 2z/N periodic in PSU(N).
(Here, 0 is a parameter of the theory not a dynamical axion field.)
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» The periodicity of the @ angle can be understood from the Witten effect, that
monopoles carry fractional electric charges proportional to €.
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Global Form of the Gauge Group

* 4D gauge theories based on the same Lie algebra but with different global form of
the gauge group, e.g., SU(N) v.s PSU(N) [Aharony,Seiberg, Tachikawa 2013]

* Are locally indistinguishable
 Have different spectrum of line operators
 Have different quantization of the instanton numbers

* These theories are related by gauging a 1-form symmetry, which is a symmetry
acting line operators [Gaiotto, Kapustin Seiberg, Willett 2014

Gauging Z, center 1-form sym

SU(N) PSU(N)

Gauging Z, magnetic 1-form sym
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Axion-gauge Coupling Quantization

» Couple both the SU(N) and the PSU(N) gauge theory to an axion.
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» In SU(N) theory, the coupling K is quantized to be K € Z.

e In PSU(N) theory, the coupling is quantized to be K € N/, because of fractional
instantons n € Z/N.
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Quantization Conditions in Axion-SM

* We now return to the SM. As an example, consider the minimal SM gauge group
G=[SUQB)XSUQR)X U(l)yl/Z
» The Z, quotient is generated by a diagonal subgroup,
eZm’/313X3 ®—1,,® o 27l

so the instanton numbers are correlated (generalizing [Anber, Poppitz 2021])
nmeZl3, n,eZ/2, n € Z/36
m—24n, €/, n,—18n,€ 2, 2nm+n+6n €2
* This leads to correlated quantization conditions
K,,K,e ”Z, K €6/, 24K,+ 18K, + K, € 36/
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Quantization Conditions in Axion-SM

* | et’s now connect our quantization condition to experimental observation.

 Below electroweak scale, the three couplings K; reduce to the axion couplings to
the and photon:

)
4_71-2TrF3/\F3+8_][2F/\F
* For the minimal SM gauge group,

NezI2, Ee€Z/3, AN+ 3E € 37
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Effective Axion-photon Coupling

 QCD axion assumption: axion mass is generated by the coupling to QCD

 The mass is given by [Weinberg 1978]

102GeV

m, = 35.70(6)(4)ueV N

 Below the QCD scale, the axion mixes with the pion generating an effective axion-
photon coupling given by [Grilli di Cortona, Hardy, Pardo Vega, Villadoro 20195]

— T a E
Fine structure g, = (— — 1.92(4))
constant 2nfIN \ N
bare mixing

coupling with pions
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» Since L, N are subject to the quantization conditions, the effective axion-photon
coupling | g,,,| is subject to certain rationality condition.

* Every real number can be approximated by rational number. However, the
denominator, I.e., the axion-gluon coupling, is related to the number of

« Stable axion domain walls are in tension with the current observations if they are
formed after inflation. Many proposed solutions.
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E
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- If we don’t want to face the axion domain wall problem, we want Ny = 2N = 1,
which gives a lower bound on |g,,. |

> 0.15(1)GeV~™> X m
| a
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» The closest rational number E/N to 1.92 subject to our quantization conditions
NeZ/l2,Ee Z/3,4N+ 3E € 37 is

E/N = 8/3
» It is realized by the minimal DFSZ model and SU(S), Spin(10), E; GUTs model.
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Quantization Condition

SM gauge Quantization of Quantization of
group axion-gauge coupling N and E
G K, K, K, € Z NeZl2, E e Z/36

G/Z, KnRo€ £, K €22 NeZ/2, EE Z/9
2K, + K, € 47

/7 Ky,K,e Z, K, € 37 NeZl2, Ee Z/12
3 6K, + K, € 97 4N + 12E € 37

Ky,K, e Z, K, €67 NeZl2, Ee€ Z/3
24K;5 + 18K, + K, € 36Z AN + 3E € 37

G/Z,

G = SUB) x SU2) x U(1)y



Conclusion

* There is an ambiguity in the of the Standard Model (SM) gauge group
BUQB) X SUR2) x U(1)y)/T°
withl' = Z¢, Z5, Z,,1, which hasn’t been determined by the current experiments.

« We analyzed how different choices of I  modify the quantization of the axion
coupling to the SM and how they affect the observation of QCD axion.

e |[f QCD axion were discovered in the future, our quantization condition can be used
to constrain the global form of the Standard Model gauge group.

» Assuming no axion domain walls, we showed that the ratio | g, | /m,, is minimized

at £/N = 8/3 forl" = Z,. It provides another motivation for targeting £/N = 8/3
IN experiments.
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Conclusion

 We have also analyzed generalized global symmetries in the axion-SM, including
the non-invertible and higher group symmetry.

» These symmetries depend on the axion-gauge coupling K; and the global form of
the gauge group.

e /|n some cases, we can put a bound on m
under the Z, center

centeps IMass of the lightest particle charged

Meenter S ﬁ’ Meenter 5 mmonopole

1" : axion string tension

Mmonopole - Mass of the hypercharge monopole
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Thank you!



