Mini-workshop HKUST, Jan 16 – 17, 2024

Topological production of

Axion dark matter from cosmic string network: revisited

Minho Son KAIST

Independent check from scratch by two students at KAIST,

Heejoo Kim, Junghyeon Park

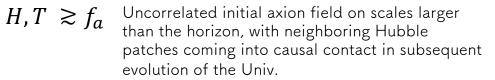
arXiv:2401.xxxx

Supported by KISTI super-computing center

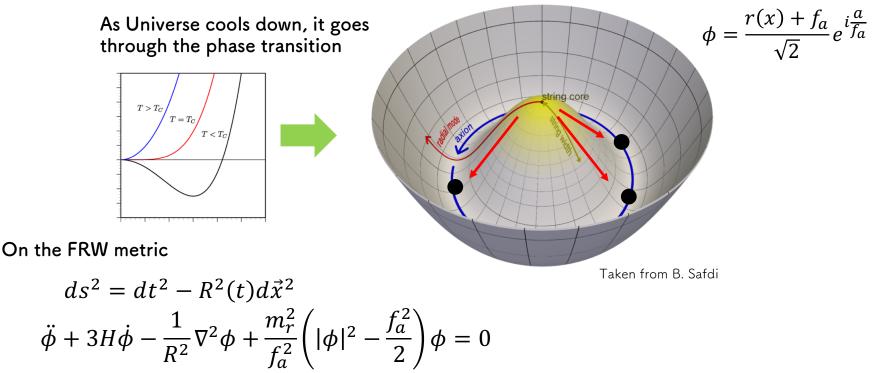
Peccei-Quinn U(1)_PQ Phase Transition

$$\mathcal{L} = \partial_{\mu}\phi^*\partial^{\mu}\phi - \frac{m_r^2}{2f_a^2}\left(|\phi|^2 - \frac{f_a^2}{2}\right)^2 \qquad \phi = |\phi|e^{i\frac{\alpha}{f_a}}$$

Post-inflationary scenario

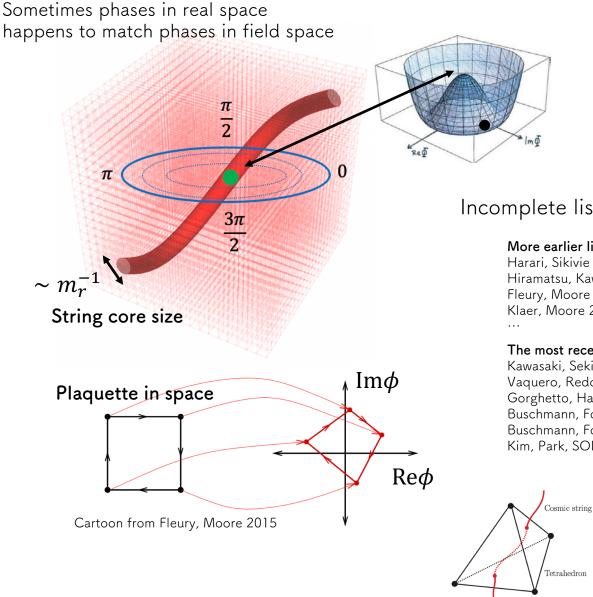


During the phase transition phases are randomly distributed



has a solitonic string-like solution

Formation of topological cosmic string



Incomplete list of references

More earlier literature missed here

Harari, Sikivie 1987 'Hagmann, Chang, Sikivie 1999 Hiramatsu, Kawasaki, Sekiguchi, Yamaguchi, Yokoyama 2011 Fleury, Moore 2015 Klaer, Moore 2017

The most recent update on global string \cdots

Kawasaki, Sekiguchi, Yamaguchi, Yokoyama, 2018 Vaquero, Redondo, Stadler 18' Gorghetto, Hardy, Villadoro 2018, 2020 Buschmann, Foster, Safdi 2019 Buschmann, Foster, Hook, Peterson, Willcox, Zhang, Safdi 2021 Kim, Park, SON in progress

New tetrahedron-based string identification

: ensures the connectedness of strings. Add no extra CPU time

Kim, Park, SON 2401.xxx

Topological production of axion dark matter

$$\rho_{\text{tot}} = \left\langle \left| \dot{\phi} \right|^2 + |\nabla \phi|^2 + V(\phi) \right\rangle$$

3D volume (spatial) average

$$= \left\langle \frac{1}{2} \dot{a}^2 + \frac{1}{2} |\nabla a|^2 \right\rangle + \left\langle \frac{1}{2} \dot{r}^2 + \frac{1}{2} |\nabla r|^2 + V(r) \right\rangle$$

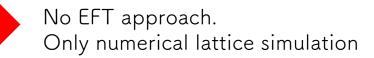
2× : stored in axions : stored in radial modes

$$+\left|\left(\frac{r^2}{2f_a^2} + \frac{r}{f_a}\right)(\dot{a}^2 + |\nabla a|^2)\right|$$

String energy density

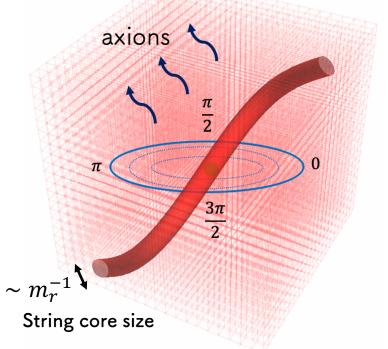
$$\rho_s = \rho_{\rm tot} - \rho_a - \rho_r$$

Axions produced from strings at the time of QCD crossover is what we need



$$\phi = \frac{r(x) + f_a}{\sqrt{2}} e^{i\frac{a}{f_a}}$$

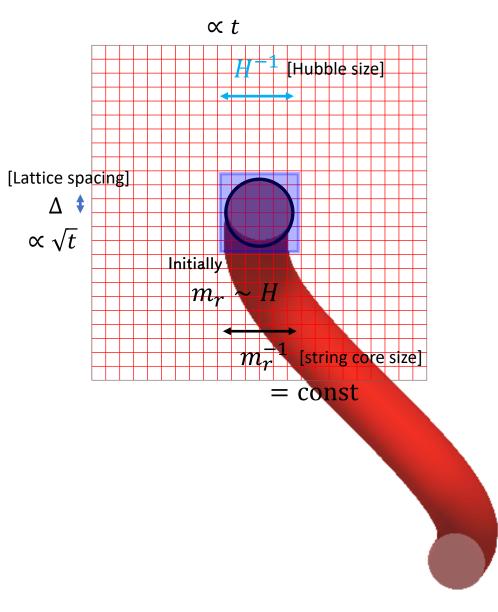
Axion radiation from strings



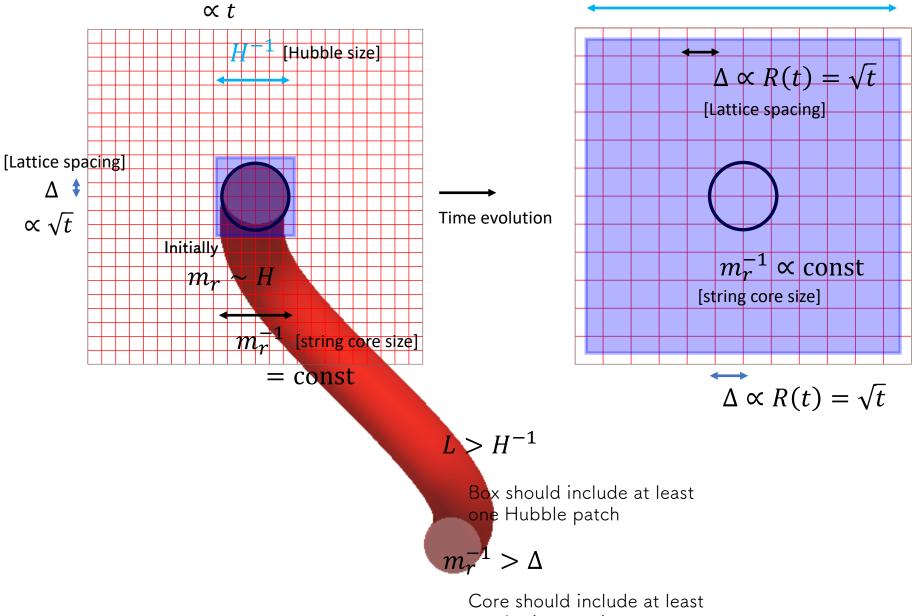
In Logarithmic time evolution in terms of Hubble e-folding

$$\log \frac{m_r}{H} = \log \frac{t}{t_0} \sim [1, 70]$$

 $[m_r, H(t_{QCD})]$

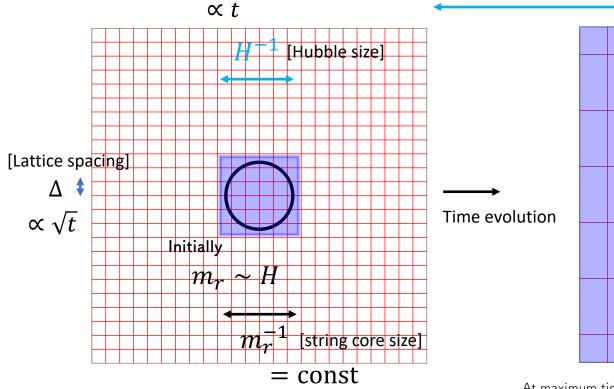


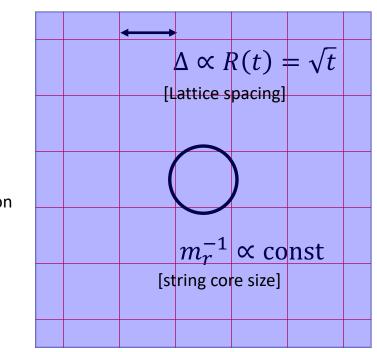
 $H^{-1} \propto t$ [Hubble size]



one lattice spacing

 $H^{-1} \propto t$ [Hubble size]





At maximum time, both criteria is violated

$$L > H^{-1}$$

Box should include at least one Hubble patch

$$m_r^{-1} > \Delta$$

Core should include at least one lattice spacing

$$\log \frac{m_r}{H} = \log \frac{t}{t_0} \lesssim \log \frac{L}{\Delta} = \log N \quad \to \log \frac{N}{n_c n_H}$$

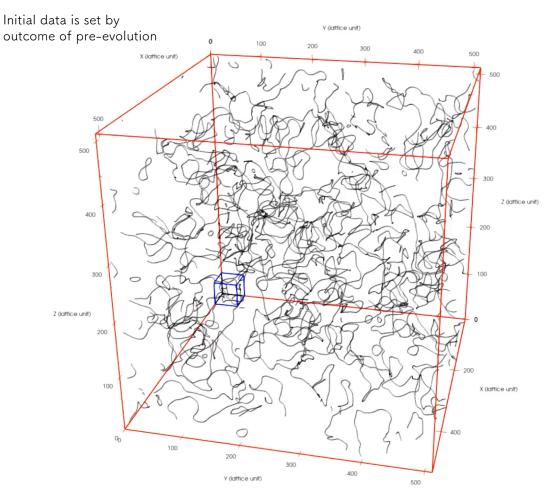
: maximum time evolution in terms of e-folding is limited by the lattice size N

$$\Delta x = \left. \frac{m_r^{-1}}{n_c R(t)} \right|_{t=(1/2H)_{\text{max}}} = \frac{m_r^{-1}}{n_c} \left(\frac{2n_c n_H}{N} \right)_{7}^{\frac{1}{2}}$$

 $N^3 = 512^3$

In comoving simulation box with constant lattice spacing $\Delta = \text{const.} = L/512$

 $log(m_r/H) = 2.000$



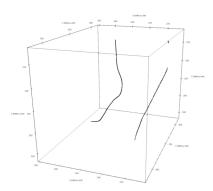
Hubble size

$$\frac{H^{-1}}{\Delta} \propto t^{1/2}$$

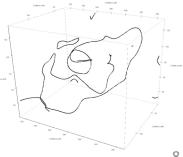
String core size

 $\frac{m_r^{-1}}{\Lambda} \propto t^{-1/2}$

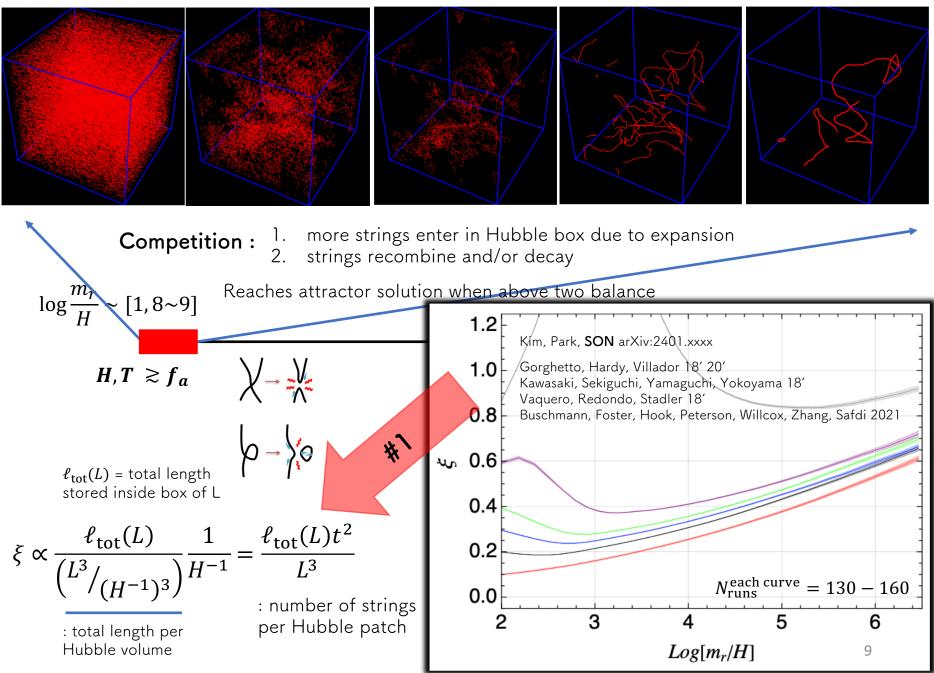
Inter-commutation

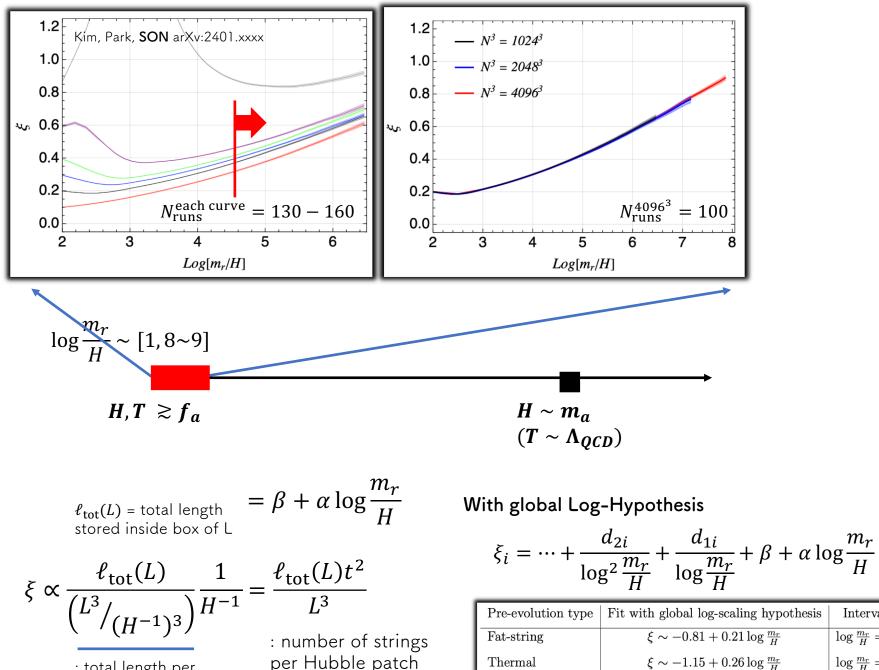


Decay of closed string



Toy simulation by **SON** et al



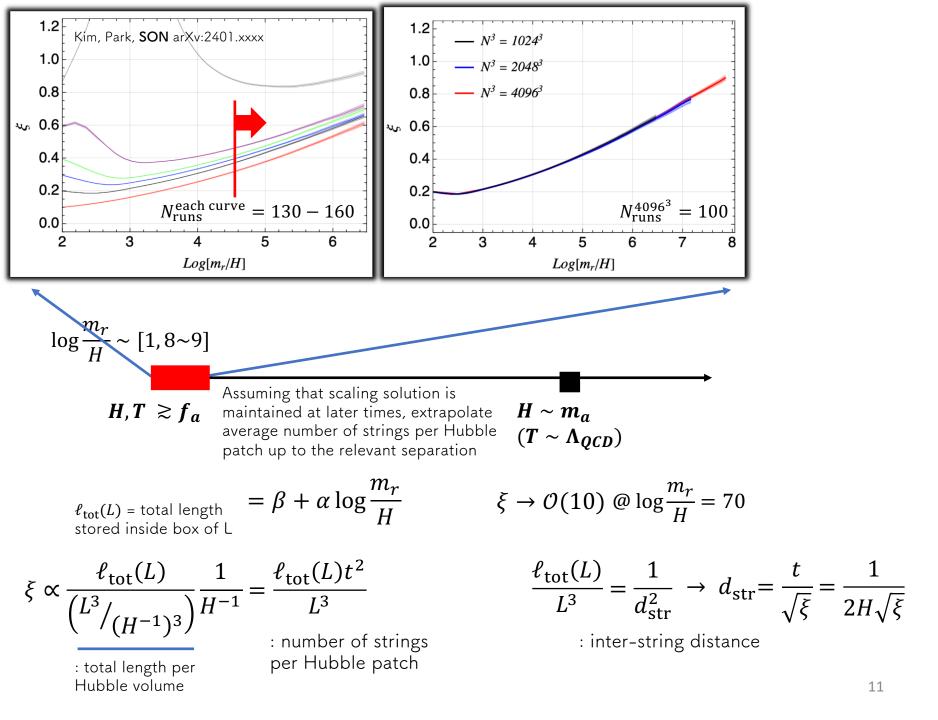


: total length per Hubble volume

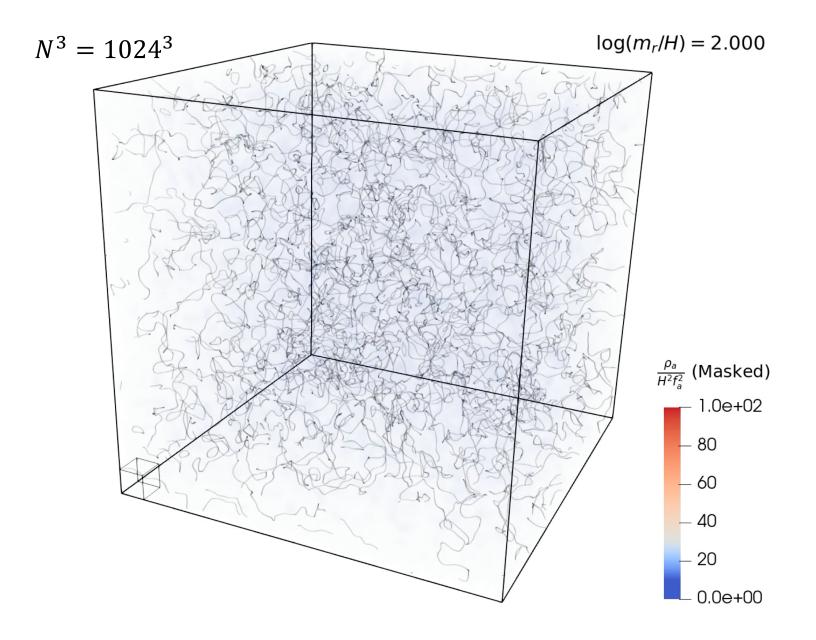
10

Interval for fit $\log \frac{m_r}{H} = [5.0, -]$

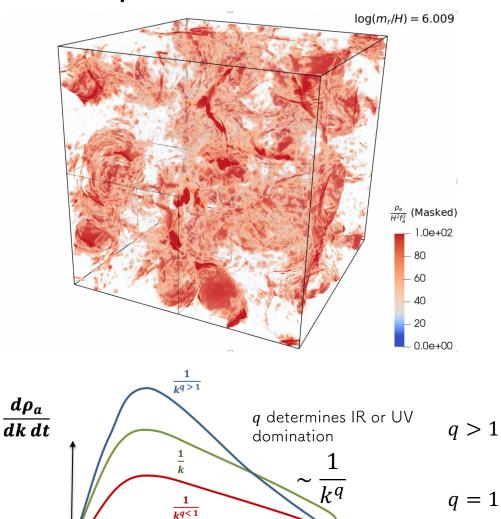
 $\log \frac{m_r}{H} = [5.0, -]$



Axion spectrum, abundance



Axion spectrum, abundance



$$n_a = \int \frac{dk}{k} \frac{\partial \rho_a}{\partial k}$$

: We want to evaluate axion number density as a function of time

: should follow a **power law** due to absence of other non-trivial scales and sampling has to be done in scaling regime

Sizeable

Most energy emitted order of O(H). n_a comes from ρ_s divided by typical momentum of order of O(H)

Moderate

Energy is equally distributed in logarithmic intervals of k. n_a is smaller by a factor of log compared to the above

Suppressed

q < 1

k

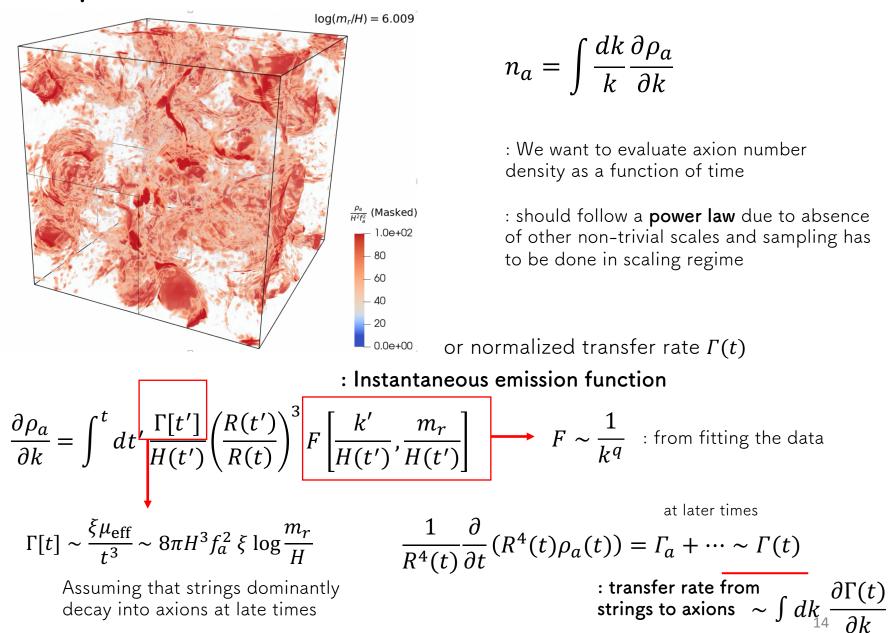
 m_r

UV dominated spectrum. n_a is power-suppressed 3

From Gorghetto, Hardy, Villador 18'

Η

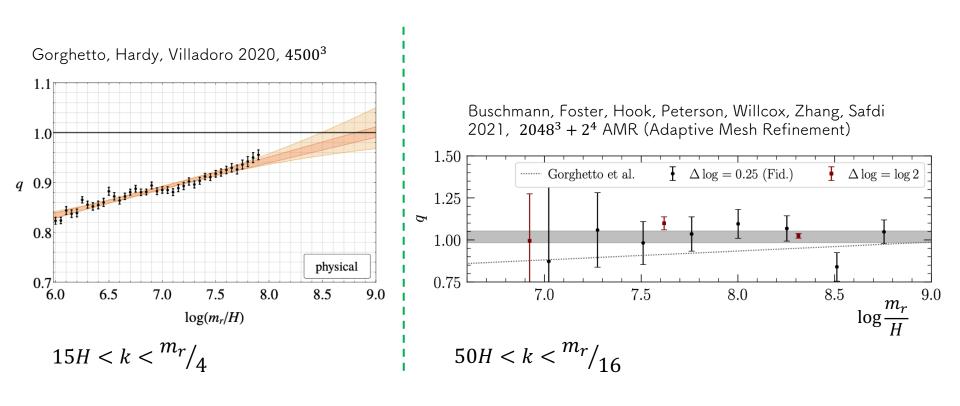
Axion spectrum, abundance



$$\frac{\partial \rho_{a}}{\partial k} = \int^{t} dt \sqrt{\frac{\Gamma[t']}{H(t')}} \left(\frac{R(t')}{R(t)}\right)^{3} F\left[\frac{k'}{H(t')}, \frac{m_{r}}{H(t')}\right] \longrightarrow F \sim \frac{1}{k^{q}} : \text{from fitting the data}$$

$$\Gamma[t] \sim \frac{\xi \mu_{\text{eff}}}{t^{3}} \sim 8\pi H^{3} f_{a}^{2} \xi \log \frac{m_{r}}{H} \qquad \text{Assuming } q > 1 \begin{bmatrix} \frac{\partial \rho_{a}}{\partial k} \sim \frac{1}{k} \\ k \sim [H, \sqrt{m_{r}H}] \\ \frac{\partial \rho_{a}}{\partial k} \sim \frac{1}{k} \end{bmatrix}$$
A large range of possible number density
$$\frac{n_{a}^{q>1}}{n_{a}^{\text{mis}}} \Big|_{t_{\ell}} \propto \left(\xi_{\star} \log \frac{m_{r}}{H_{\star}}\right)^{\frac{1}{2} + \cdots}, \qquad \cdots$$
Gorghetto, Hardy, Villadoro 20'
$$\frac{QCD \text{ axion relic abundance}}{m_{a} \sim 10^{-5} \text{ eV}}^{7/6} \langle \theta_{a,l}^{2} \rangle$$

Logarithmic gross of q & IR dominance at late times vs No-log, which one?



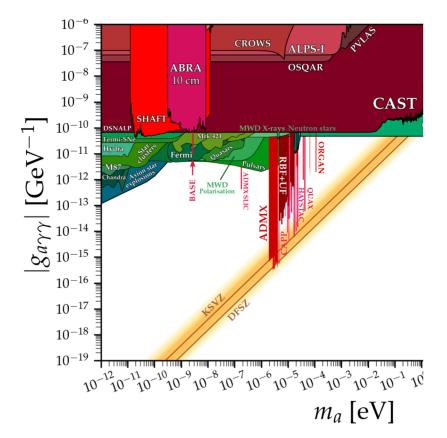
Log hypothesis

$$q \sim q_0 + (0.053 \pm 0.005) \log \frac{m_r}{H}$$
 VS

: strong hint for IR domination at later times

Log hypothesis $q \sim 1.36 \pm 0.69 + (-0.04 \pm 0.08) \log \frac{m_r}{H}$ No Log hypothesis $q \sim 1.02 \pm 0.04$

Implication on the QCD axion search



Abundance should not exceed the current observed dark matter value leads to

Buschmann, Foster, Hook, Peterson, Willcox, Zhang, Safdi 2021

$$m_a \sim [0.4 - 1.8] \times 10^{-4} \text{ eV}$$

(= 40 - 180 µeV)

Gorghetto, Hardy, Villadoro 2020

$$m_a \gtrsim 5 \times 10^{-4} \text{ eV}$$
, $f_a \lesssim 10^{10} \text{ GeV}$
(= 500 µeV)

 $\xi_* = 15, x_{IR} = 10, q > 2, \log_* = 64, N = 1$ benchmark (at QCD7PT)

our independent check

arXiv:2401.xxxx

Actual beginning of simulation

In practice, we need pre-step. Justification is our belief that the scaling solution is insensitive to all details in early times

Pre-evolution for relaxation

Role of pre-evolution is to relax noisy string network to a relatively clean level. It stops when this requirement is met

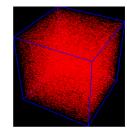
End result of pre-evolution becomes the initial data of the physical string evolution

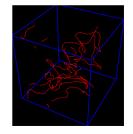
Lots of high-freq. modes are relaxed during this step

evolution Beginning of physical string

Beginning of physical

string simulation



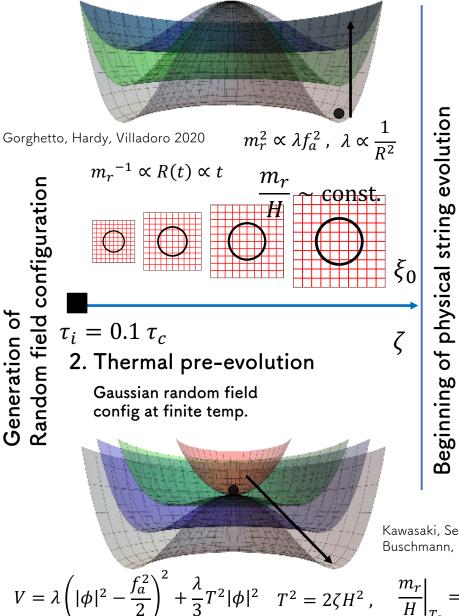


Dynamic time range of physical string evolution

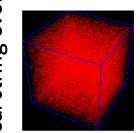
$$\log \frac{m_r}{H} \sim [2, 8 \sim 9]$$

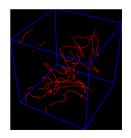
1. Fat-string pre-evolution

Normal distribution as if it is symmetric



Role of pre-evolution is to relax noisy string network to a relatively clean level.





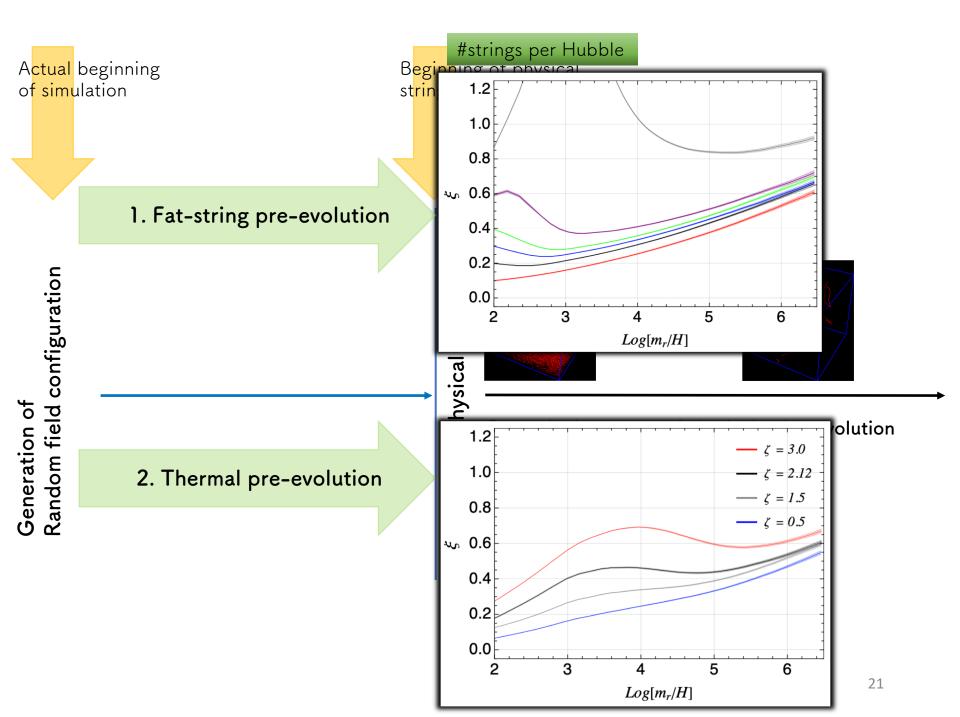
Dynamic time range of physical string evolution

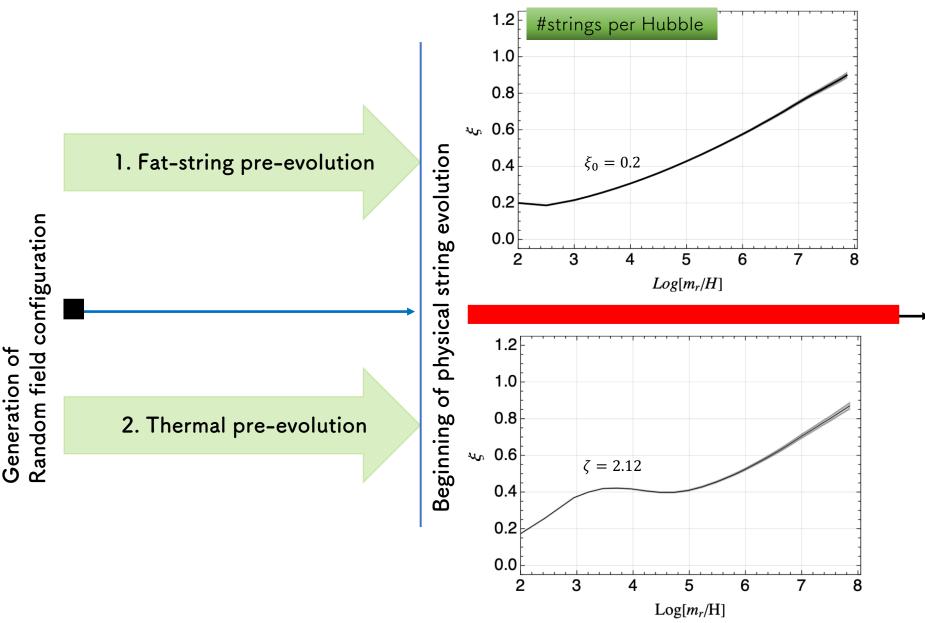
$$\log \frac{m_r}{H} \sim [2, 8 \sim 9]$$

Kawasaki, Sekiguchi, Yamaguchi, Yokoyama 2018 Buschmann, Foster, Hook, Peterson, Willcox, Zhang, Safdi 2021

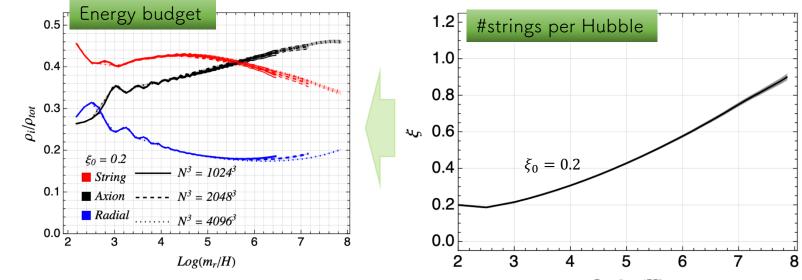
$$\left.\frac{m_r}{H}\right|_{T_c} = \frac{2}{3}\zeta$$

20



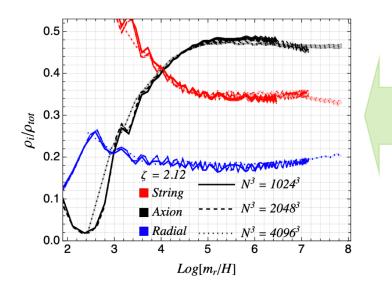


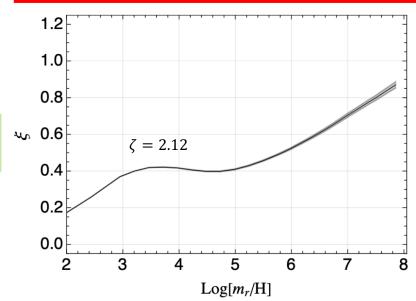
1. Fat-string pre-evolution



 $Log[m_r/H]$

2. Thermal pre-evolution

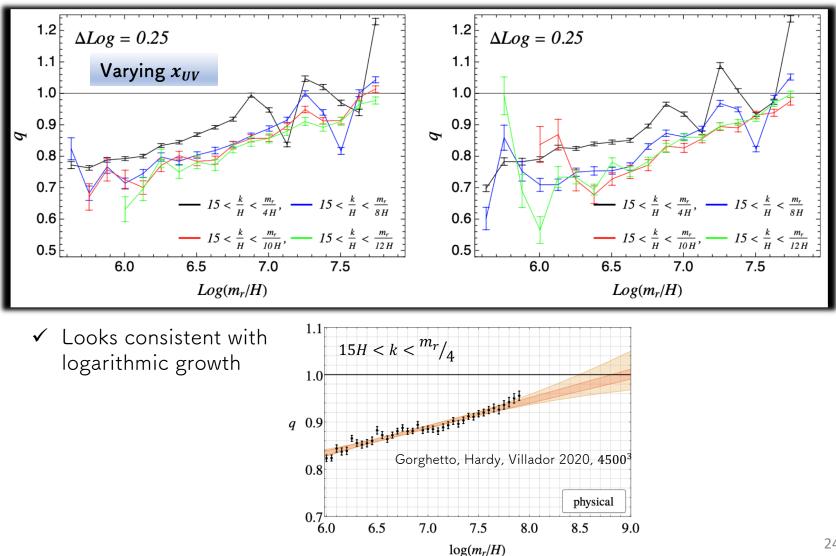




Logarithmic gross of q & IR-dominance

1. Fat-string pre-evolution type

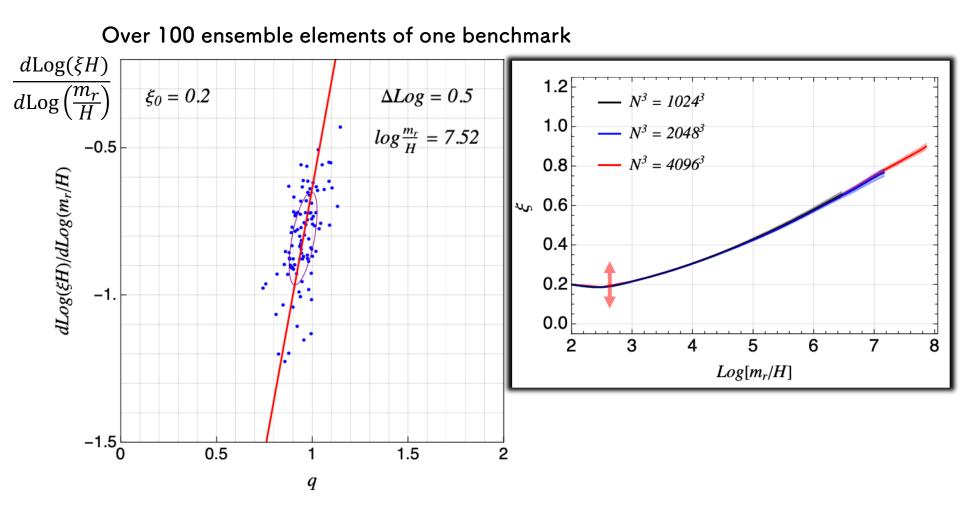
2. Thermal pre-evolution type



24

Justification for our benchmark

Correlation between strings and spectral index



Summary

We independently support the logarithmic growth of ξ (strings per Hubble) and spectral index of axion spectrum. $N^3 = 8000^3$ should be possible for us (very near future).

