Using Galaxy Formation Models to Unveil the Nature of Dark Matter in the JWST era

Giorgio Manzoni 16/01/2024 IAS-HKUST

A miscellaneous TEAM

- Giorgio Manzoni (IAS)
- <u>Tao Liu</u> (IAS),
- <u>George Smoot</u> (IAS)
- <u>Tom Broadhurst</u> (Ikerbasque),
- Jeremy Lim (HKU),
- Carlton Baugh (Durham),
- <u>Leo Fung</u> (IAS),
- Josh Zhang (HKU)

And the **PEARLS team**

led by Rogier Windhorst (Arizona)

And I am making use of the **semi-analytical models** of galaxy formation to make predictions on **JWST** observation and getting some constraints on **DARK MATTER model**

The James Webb Space Telescope vs the Hubble Space Telescope

- Launched on Christmas 2021 started to release scientific images on July 2022
- Sent in L2 (darkest lagrangian point)
- 18 hexagonal segments, each ~1.4 m in diameter, they act as if it was a 6.5m single mirror diameter (HST is 2.4m single mirror)

It observes Infrared to get the optical rest frame

SMACS 0723 z~0.39

Not representative of the entire universe as we are looking at a cluster (which is an over density)

The **homogeneity** and **isotropy** works at larger scales

We need a **parallel** field

First image released on 11th July 2022

The first PEARLS overview paper

Webb's PEARLS: Prime Extragalactic Areas for Reionization and Lensing Science: Project Overview and First Results

ROGIER A. WINDHORST,¹ SETH H. COHEN,¹ ROLF A. JANSEN,¹ JAKE SUMMERS,¹ SCOTT TOMPKINS,¹ CHRISTOPHER J. CONSELICE,⁵ SIMON P. DRIVER,³ HAOJING YAN,⁴ DAN COE,⁵ BRENDA FRYE,⁶ NORMAN GROGIN,⁷ ANTON KOEKEMOER,⁷ MADELINE A. MARSHALL,^{8,9} ROSALIA O'BRIEN,¹ NOR PIRZKAL,⁷ AARON ROBOTHAM,³ RUSSELL E. RYAN, JR.,⁷ CHRISTOPHER N. A. WILLMER,⁶ TIMOTHY CARLETON,¹ JOSE M. DIEGO,¹⁰ WILLIAM C. KEEL,¹¹ PAOLO PORTO,¹ CALEB REDSHAW,¹ SYDNEY SCHELLER,¹² ANDI SWIRBUL,¹ STEPHEN M. WILKINS,¹³ S. P. WILLNER,¹⁴ ADI ZITRIN,¹⁵ NATHAN J. ADAMS,² DUNCAN AUSTIN,² RICHARD G. ARENDT,¹⁶ JOHN F. BEACOM,¹⁷ RACHANA A. BHATAWDEKAR,¹⁸ LARRY D. BRADLEY,⁷ TOM BROADHURST,^{19, 20, 21} CHENG CHENG,²² FRANCESCA CIVANO,¹⁴ LIANG DAI,²³ HERVÉ DOLE,²⁴ JORDAN C. J. D'SILVA,³ KENNETH J. DUNCAN,²⁵ GIOVANNI G. FAZIO,¹⁴ GIOVANNI FERRAMI,^{26,9} LEONARDO FERREIRA,²⁷ STEVEN L. FINKELSTEIN,²⁸ LUKAS J. FURTAK,²⁹ ALEX GRIFFITHS,²⁷ HEIDI B. HAMMEL,³⁰ KEVIN C. HARRINGTON,³¹ NIMISH P. HATHI,⁷ BENNE W. HOLWERDA,³² JIA-SHENG HUANG,³³ MINHEE HYUN,^{34,35} MYUNGSHIN IM,³⁴ BHAVIN A. JOSHI,³⁶ PATRICK S. KAMIENESKI,³⁷ PATRICK KELLY,³⁸ REBECCA L. LARSON,²⁸ JUNO LI,³ JEREMY LIM,³⁹ ZHIYUAN MA,³⁷ PETER MAKSYM,¹⁴ GIORGIO MANZONI,⁴⁰ Ashish Kumar Meena,¹⁵ Stefanie N. Milam,⁴¹ Mario Nonino,⁴² Massimo Pascale,⁴³ Justin D. R. Pierel,⁷ ANDREEA PETRIC,⁷ MARIA DEL CARMEN POLLETTA,⁴⁴ HUUB J. A. RÖTTGERING,⁴⁵ MICHAEL J. RUTKOWSKI,⁴⁶ IAN SMAIL,⁴⁷ AMBER N. STRAUGHN,⁴⁸ LOUIS-GREGORY STROLGER,⁷ JAMES A. A. TRUSSLER,² LIFAN WANG,⁴⁹ BRIAN WELCH,³⁶ J. STUART B. WYITHE,^{26,9} MIN YUN,³⁷ ERIK ZACKRISSON,⁵⁰ JIASHUO ZHANG,⁴⁰ AND XIURUI ZHAO¹⁴

PEARLS images

GALAXIES ARE NOT STANDARD CANDLES

Intrinsic vs observed properties

FLUX = OBSERVED

$$m - m_{ref} = -2.5 \log_{10} \left(\frac{F}{F_{ref}} \right)$$

(apparent magnitude)

LUMINOSITY = INTRINSIC

$$M - M_{ref} = -2.5 \log_{10} \left(\frac{L}{L_{ref}} \right)$$

(ABSOLUTE magnitude)

Rogier Windhorst's number counts (PEARLS TEAM)

APPARENT MAGNITUDE

NUMBER COUNTS AND LUMINOSITY FUNCTION

OBSERVATION

SIMULATION

GALAXY FORMATION IS A 2 STEP PROCESS

DARK MATTER COMPONENT

DM-only <mark>N-body</mark> Simulation

- Very
 - **computationally expensive**, it's done once for all
- Hence it's limited to the resolution used
- And it's limited to the DM model that has been used

Monte Carlo based on Press - Schechter formalism

- Very fast
- The **resolution** can be **chosen**
- It slow down exponentially with the resolution
- Different DM model can be explored

Parkinson et al 2008, Benson et al. 2013

MODELLING THE BARYONIC PHYSICS

SEMI-ANALYTICAL MODELS

GLOBAL PROPERTIES

Advantages:

- Fast
- Flexible
- Give prediction for large scales

Disadvantages:

- Approximated
- Involves some calibration with observations at z=0

HYDRODYNAMICAL SIMULATION

PROPERTIES WITHIN GALAXIES

Advantages:

- More accurate physics modelling at higher resolution
 Disadvantages:
 - Only small scales predictions
 - No luminosities
 - Less processes

My a semi-analytic model: GALFORM

The main processes modelled in GALFORM are:

- Shock-heating and radiative cooling of gas inside DM halos (leading to the formation of galaxies)
- Star formation in galaxies in galaxy disks ("quiescent") and bursts
- Feedback:
 - from supernovae (SN)
 - from active galactic nuclei (AGN)
 - from **photo-ionization** of IGM
- Galaxy mergers driven by dynamical friction and bar instabilities in galaxy disks (both can trigger starbursts and lead to the formation of spheroids)
- Chemical enrichment of stars and gas
- Reprocessing of starlight by dust (calculated from gas and metal content of each galaxy):
 - **Dust extinction** from UV to near-IR
 - **Dust emission** from far IR to sub-mm wavelength

Cole et al. 2000, Lacey et al. 2016, Baugh et al. 2019

Creation of a lightcone

$$\dot{M}_{\rm eject} = eta(V_{\rm c})\psi = \left(rac{V_{\rm c}}{V_{
m SN}}
ight)^{-\gamma_{
m SN}}\psi$$

The output of semi-analytic models comes in **snapshots** but it can be interpolated into a lightcone.

You need galaxy positions from N-body simulation.

Yung et al. 2022

Power spectrum for different Dark Matter models

JWST OBSERVATIONS

GALFORM PREDICTIONS

Windhorst et al. 2023

Manzoni et al. in prep.

JWST OBSERVATIONS

GALFORM PREDICTIONS

Windhorst et al. 2023

Manzoni et al. in prep.

Which redshifts are really dominating?

STANDARD LUMINOSITY FUNCTION

MODIFIED LUMINOSITY FUNCTION

We are looking at different part of the luminosity function

ABSOLUTE MAGNITUDE REST FRAME

Conclusions

• I have created a **mock catalogue** for JWST using semi-analytic models of galaxy formations

- I have investigated different variation of the model for:
 - Standard particle CDM
 - Wave DM (for different particle masses)

• I split the analysis of the number counts into simulated luminosity functions

- I have explained the change in slope of the number counts
 - Due to a change in population rather than a different DM scenario

- I have studied the **redshift distributions**:
 - Trying to make prediction for the high redshift tail

Additional slides for discussion

Location of the break

https://arxiv.org/pdf/2207.11217.pdf

Variations of the model (different DM model and feedback)

The JWST field of view

N-Body simulation (Millennium)

Using only low redshift luminosity functions

A fundamental parameter of the simulation: nmass

The grid of halo masses values used by the simulation is defined as this

z = 0.000

z = 4.347

Redshift distributions for different MAX mass

The number counts can be used to estimate the: INTEGRATED GALAXY LIGHT (IGL)

PEARLS fields used for counts and background light

Galaxies contribute to the Integrated Galaxy Light (IGL)

The rest of the light is called Sky-SB = Sky-Surface Brightness and it comes from many things

The first step is the study of the halo mass function

- The halo mass function is:
 - the number of MAIN DARK MATTER HALO
 - per unit of logarithmic mass bin
 - and per unit of **volume**
- It is expected to have a different behaviours between CDM and Wave DM.

Fig. 4, Schive et al. 2016

Getting a theoretical model as a reference: HMFCalc

This theoretical model agrees with the literature

HMF for DM HALOS with and without galaxies (MCTREE)

DASHED = DARK MATTER HALOS WITH GALAXIES

SOLID = ALL DARK MATTER HALOS (also when galaxies have not formed yet)

Change in volume per unit area

Field of view of JWST

https://jwst-docs.stsci.edu/jwst-observatory-characteristics/jwst-field-of-view

The JWST instruments

- 1. NIRCam (Near InfraRed Camera)
- 2. **NIRSpec** (Near InfraRed Spectrograph)
- 3. MIRI (Mid InfraRed Instrument)
- 4. FGS/**NIRISS** or simply NIRISS (Fine Guidance Sensor/Near Infrared Imager and Slitless Spectrograph)

https://www.stsci.edu/jwst/instrumentation/instruments

Improving the understanding of the baryonic physics

I will be simulating NIRCam observation in the wide filters

NIRCam Filters

https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-instrumentation/nircam-filters

COSMA FACILITIES

Hosted by the Institute of Computational Cosmology (ICC) at Durham University and used by cosmologists, astronomers and particle physicists from across the world, **COSMA** has the processing power and memory of about **28,000 home PCs**.

Using COSMA, **single run** of my current JWST simulations take an average of **5 to 6 days to end**.

https://dirac.ac.uk/ DIRAC - DIstributed Research utilising Advanced Computing

https://www.durham.ac.uk/departments/academic/physics/cosma7/

COSMA specifics

- **360 compute nodes with 1 TB RAM** and dual 64-core AMD EPYC 7H12 water-cooled processors at 2.6GHz
- 2 login nodes with 2 TB RAM and dual 32-core AMD EPYC 7542 processors at 2.9 GHz
- 2 fat nodes with 4 TB RAM and dual 64-core AMD EPYC
 7702 processors at 2.2GHz
- 1 AMD GPU nodes with 6 MI50 GPUs (32GB), 1TB RAM, dual 16-core AMD EPYC 7282 processors at 2.8GHz
- 1 AMD Milan node with a MI100 GPU, 1TB RAM, dual
 64-core AMD EPYC Milan 7713 processors at 2GHz
- 1 NVIDIA GPU node with 10 V100 GPUs (32GB), 768GB
 RAM, dual Intel Xeon Gold 5218 processors at 2.3GHz
- 2 console nodes with a single 16-core AMD EPYC 7302 processor at 3GHz and 256GB RAM

Luminosity functions

The luminosity function can be converted into number counts

- 1. CONVERT INTO **APPARENT MAGNITUDE**:
- 2. Consider the change in volume element with redshift
- 3. Integrate over the redshift range of interest

• z = 0.04

35

¹⁰ ¹⁵ ²⁰ ²⁵ ³⁰ observer frame APPARENT magnitude

z=0.04

10 15 20 25 30 observer frame APPARENT magnitude

5

• z = 0.27

z=0.27

observer frame APPARENT magnitude

• z = 0.61

35

z=0.61

Calibration of the Luminosity Function at redshift zero

Baugh et al. 2019

$$\dot{M}_{\rm eject} = \beta(V_{\rm c})\psi = \left(\frac{V_{\rm c}}{V_{\rm SN}}\right)^{-\gamma_{\rm SN}}\psi$$

alpha_Cooled_Remove	=	1.00000E+00
transfer halo cold	=	0
- vdisk	=	T
Vcirc Fac	=	1.00000E+10
tdisk	=	Т
NoDiskUseHalo	=	Т
alphahot	=	3.40000E+00
vhotdisk	=	3.20000E+02
vhotburst	=	3.20000E+02
Saturate Feedback	=	F
thresholdVcirc	=	1.00000E+06
fsw0disk	=	0.00000E+00
fsw0burst	=	0.00000E+00
vswdisk	=	1.00000E+02
vswburst	=	1.00000E+02
Sat_Evol_Feedback	=	F
alphahot_prime	=	1.00000E+00
vhotdisk_prime	=	1.80000E+02
vhotburst_prime	=	1.80000E+02
vcirc prime	=	5.00000E+01