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Dark matter is ubiquitous in the Universe!
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What is the essence of DM?

» Dark matter == mass m,

» To measure wmp DM-SM interaction == cross sections oynpe..., (OV)

my eV MeV GeV > TeV

not-to-scale



The DM probes: m, & o

my eV MeV GeV > TeV

not-to-scale



CDEX Collab. Hochberg+ (2016)
LUX Collab. Geilhufe+ (2019)

SENSEI Collab. Kim+ (2020)

The DM probes: my, & o
Essig+ (2015) Knapen+ (2020)...
Hochberg+ (2015)
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superconductor/graphene semiconductor liquid xenon
Dirac matter... skipper CCD
Dark matter

direct search
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The DM probes: my& o “mimeog

EEEEER zz -
" low temperature | |
uantum effects electron recoils
my eV 1 MeV GeV
superconductor/graphene semiconductor
Dirac matter... skipper CCD
Dark matter

direct search

not-to-scale

nucleus recoils

> TeV

liquid xenon



The DM probes: m, & o
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The DM probes: my & o “pimate 4
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The SNvVBDM




Galactic supernova

In practice
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Galactic supernova
In practice SN@GC
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Galactic supernova

SN@GC

SN@GC
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Halo DM boosted by SNv

duration: ~10s
N, ~ 10°8
E,, ~ 10 — 15 MeV _
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Halo DM boosted by SNv

duration: ~10s
N, ~ 10°8

E,~10—15MeV =
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dE, ; 4p(Ey, ).

Duan+ 2006
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Halo DM boosted by SNv

duration: ~10s

N, ~ 10°8
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Halo DM boosted by SNv

Px = (mxv 0)

QO

Pv = (EIM pu)
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Halo DM boosted by SNv

» Non-zero DM-v cross section oy

p, = (E,,,p,) » 'The BDM Kkinetic energy T,

Px = (mX,O)
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-0 iy g3 (1)

r . —
Py = (B, Py) E,+m,/2 2

Pv = (EIM pu)

duration: ~10s
N, ~ 10°8

E, =10 — 15 MeV o o™ S s
dn,, B L, .. e
dE, 2 A (E,,).

. V;
1 2

Duan+ 2006

not-to-scale



Halo DM boosted by SNv

» Non-zero DM-v cross section oyy

p, = (E,,,p,) » 'The BDM Kkinetic energy T,

Px = (mva)
T, = FE, — E,(cosa)
-0 iy g3 (1)
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» 'The angular distribution
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Halo DM boosted by SNv

» Non-zero DM-v cross section oy
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Halo DM boosted by SNv

» Non-zero DM-v cross section oyy
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The BDM flux
on the Earth




BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV
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BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV

A, (T, t')
dT,

1
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» BDM will arrive Earth later than SNv depending on where it was boosted
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BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV

A, (T, t'
dT,
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» BDM will arrive Earth later than SNv depending on where it was boosted

» Time-zero t =0 is calibrated by SNv

T, =10 MeV and oy, = 1073 cm™?

i
!
q
=
o
T
>
Q
=
<
=
~~
>
KA
3




BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV
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» BDM will arrive Earth later than SNv depending on where it was boosted

» Time-zero t =0 is calibrated by SNv
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BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV
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» BDM will arrive Earth later than SNv depending on where it was boosted

» Time-zero t =0 is calibrated by SNv
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BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV

A, (T, t'
dT,
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» BDM will arrive Earth later than SNv depending on where it was boosted

» Time-zero t =0 is calibrated by SNv

T, =10 MeV and oy, = 1073 cm™?
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BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV

A, (T, t'
dT,
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» BDM will arrive Earth later than SNv depending on where it was boosted

» Time-zero t =0 is calibrated by SNv

T\, =10 MeV and 0,, =10 cm » The is contributed by the BDM
coming from the SN place
peak time tp AR m)%“t
1 keV T\ ) 2T c
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BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV

A, (T, t'
dT,

1
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» BDM will arrive Earth later than SNv depending on where it was boosted

» Time-zero t =0 is calibrated by SNv

T\, =10 MeV and 0,, =10 cm » The is contributed by the BDM
coming from the SN place
peak time tp AR m)%“t
1 keV T\ ) 2T c

» my can be directly measured!
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BDM flux at Earth

» BDM flux at Earth with my=1keV and T, = 10 MeV

A, (T, t'
dT,

1
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» BDM will arrive Earth later than SNv depending on where it was boosted

» Time-zero t =0 is calibrated by SNv

T\, =10 MeV and 0,, =10 cm » The is contributed by the BDM
coming from the SN place
peak time tp AR m)%“t
1 keV T\ ) 2T c

» my can be directly measured!

» Time-dependent feature is indepen-
dent of oy,
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BDM flux from GC & Large Magellanic Cloud

» DM profile
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Galactic supernova

SN@GC

SN@GC

not-to-scale



Galactic supernova
In practice SN@GC

top-view

side-view
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BDM from various places in MW
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Rs = 8.5 kpc vs. 8




BDM from various places in MW
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BDM from various places in MW
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BDM from various places in MW
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BDM from various places in MW
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BDM from various places in MW
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BDM from various places in MW
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BDM from various places in MW
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Constraint and
sensitivity




Hirata+ (1987)
Battistoni+ (2005)
Abe+ (SK) (2016)
Lin+ (2023)

Constraints on oyy.c

» Consider total event and background counts within an exposure time
texp = Min(tvan, 35 years) with Kamiokande from 1987 - 1996 and Super-
Kamiokande from 1996 on

(Tx,min7 Tx,max) — (5, 100) MeV

Cosmic rays . _ :
(Super-K) : (s = 0y for shaded regions
from other bounds)

v’.-
J,.w”SoIar
reflection

— = |LMC (SK+Kamioka)
—— GC (SK projected)
- == GC (HK projected)

» Can provide complementary constraint on models that couple dark sector to SM
leptons



Sensitivity on couplings of L,—L-

Assuming ¢ =0
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Holdom (1986)
He+ (1991)
Chang+ (2018)
Lin+ (2023)

Sensitivity on couplings of L,—L-

Assuming ¢ =0
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SNv BDM from
early Universe




Diffuse SNv BDM from early Universe

Beacom (2006)

» Mimic diffuse supernova neutrino background (DSNB) - 8 Mey
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Diffuse SNv BDM from early Universe

Beacom (2006)

» Mimic diffuse supernova neutrino background (DSNB) L sMev
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» Diftuse SNv BDM from early Universe my = 0.1 MeV and oy = 10-5 cm?
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Diffuse SNv BDM from early Universe

Beacom (2006)

» Mimic diffuse supernova neutrino background (DSNB) o sMev
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SN@GC The most probable SN position e raton



Diffuse SNv BDM projected sensitivity

» Assuming 20 detection significance in 5 years

2 = N,
\/Ns + Nb

and UXV —_ Uxe

Cosmic rays
(Super-K)

Cosmic rays Solar
(Super-K)

reflection

PRELIMINARY PRELIMINARY

— DBDM wy/t spike
- DBDM wj/o spike

— DBDM wy/t spike
- DBDM wj/o spike

Lin & Wu, in prepration
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SUMMARY

Summary

» The SNv BDM shows complementary constraints on oy, and model
parameters for light DM

» Time-dependent BDM flux facilitates:
» Direct m, measurement
» Background reduction (via controlling the detector exposure time)
» and they are independent of oy,

» Framework is applied to both SNe located in and oft-GC

» Diffuse SNv BDM from early Universe



