Higgs physics highlights at the LHC

Chen Zhou (周辰) Peking University (北京大学)

IAS Program on High Energy Physics (HEP 2024) HKUST IAS, January 22, 2024

The Higgs boson

The Higgs boson was discovered by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) in 2012

- a major milestone for particle physics
- It opened a new way to refine our understanding of the electroweak sector
 - many studies of Higgs boson
 properties have been performed
 - deviation from the Standard Model (SM) predictions on Higgs boson properties would provide clue for new physics

Measurements of Higgs coupling properties

Higgs coupling property measurements

 ATLAS & CMS combine various Higgs production channels and various Higgs decay channels

Higgs production and decay rates

- ggF cross section is now measured with 7% precision
 - Precision of N3LO cross section prediction: 5%
- All major production modes (ggF, VBF, WH, ZH, ttH) and decay modes (H $\rightarrow\gamma\gamma$, H \rightarrow ZZ, H \rightarrow WW, H $\rightarrow\tau\tau$, H \rightarrow bb) are observed

ATLAS Na

Nature 607 (2022) 52-59

Nature 607 (2022) 60-68

- "Kappa" framework: assign coupling modifier to each interaction vertex (e.g. κ_W, κ_t...)
- Good agreement with the SM across 3 orders of magnitude of particle mass
- One of the most prominent achievements to date at the LHC

Higgs couplings to c quarks

- $H \rightarrow c\overline{c} decay$ is currently the main channel to probe Higgs coupling to c quarks
- branching ratio in SM: 2.8%

Phys. Rev. Lett. 131 (2023) 061801 Eur. Phys. J. C 82 (2022) 717

VH H→cc

- Tag leptonically decaying W/Z boson
- Observed limit at 95% CL on H→cc signal strength: 14 (CMS) and 26 (ATLAS) times SM prediction

H

Constraint on Higgs-charm Yukawa coupling modifier: 1.1 < |Kc| < 5.5
 (CMS) and |Kc| < 8.5 (ATLAS)

С

С

Relative sign of kw and kz

ATLAS-CONF-2023-057

- VBF WH production mode offers sensitivity to the relative sign of κ_W and κ_Z
- Studied using Higgs decays to *b*-quarks and *W* decays with a lepton
- Opposite-sign coupling hypothesis is excluded with significance greater than 5σ by both ATLAS and CMS

CMS-PAS-HIG-23-007 (NEW)

Fiducial cross sections

Define fiducial phase space and measure cross section inclusively or differentially to minimize dependence on theoretical uncertainties and provide sensitivity to BSM effects

- Measured in different decay modes ($H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, $H \rightarrow WW$, $H \rightarrow \tau \tau$, $H \rightarrow bb$) and in combination
- Results are currently in agreement with the SM predictions and can be interpreted using kappa models

JHEP05(2023)028

Chen Zhou (Peking U)

Interpretation with EFT

 Rotate the SMEFT basis cj to eigenvector cj' and fit sensitive eigenvectors simultaneously

- All measured parameters are consistent with the SM expectation within their uncertainties
- Comparison of the linear model and the linear+quadratic model shows sizeable sensitivity to operators suppressed by Λ⁴

LAS-CONF-2023-052

H→Zγ decay

- BSM particles & couplings could be present in the quantum loops
- Difference between $H \rightarrow Z\gamma$ decay and $H \rightarrow \gamma\gamma/H \rightarrow ZZ$ decay sensitive to new physics
 - (e.g. Qing-Hong Cao et al. *Phys. Lett.* B 789 (2019) 233)
 - Small branching ratio in SM (1.6x10⁻³);
 main bkg: non-Higgs Zγ, Z+jets
 - Select events with two leptons (mll ~90 GeV) and one photon and separate them to multiple categories to target various production modes
 - Fit in IIv mass distribution over all categories

H→Zγ decay

Phys. Rev. Lett. 132 (2024) 021803, Featured in Physics

• The observed $H \rightarrow Z\gamma$ significance in ATLAS+CMS combined result is 3.4 σ (expected 1.6 σ)

First evidence of the $H \rightarrow Z\gamma$ decay

- Signal strength is 2.2 ± 0.7: agrees with theoretical expectation within 1.9σ
- With the ongoing Run3 of the LHC, we will be able to improve the precision of this rare Higgs decay

•

Measurement of Higgs mass/width, spin/CP

Higgs mass/width

- **Higgs mass** is the only free parameter in the SM Higgs sector. Measured in channels with best resolution: $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$
 - ATLAS+CMS Run 1: 125.09 ± 0.24 GeV
 - CMS Run 1+partial Run
 2: 125.38 ± 0.14 GeV
 - ATLAS Run 1+full Run 2: 125.11 ± 0.11 GeV

- SM prediction of Higgs width: 4.1 MeV
 - direct measurement limited by detector resolution
- Constrain Higgs width by comparing on-shell and offshell Higgs rates using H→ZZ*→4I and H→ZZ*→2I2v
 - determined to be 3.2^{+2.4}-1.7 MeV
- In yy channel, interference between Higgs signal and continuous background can cause Higgs mass shift
 - this effect can also constrain Higgs width

Higgs spin/CP

- The SM Higgs boson is a scalar: spin-zero, CP-even
 - The observed boson was verified to be spin-zero in Run 1
- Non-CP-even couplings of the Higgs boson were searched
 - Data disfavor the pure CP-odd scenario, stringent constraints on CP mixing are given

Chen Zhou (Peking U)

Higgs boson self-couplings

Higgs boson self-couplings

- Higgs self-coupling is one of the deepest questions of SM and may provide a portal to new physics beyond it
 - Vacuum stability, early universe evolvement, ...
- Double Higgs production is the way to directly probe Higgs self-couplings at the LHC
 - Extremely low cross-section in the SM
 - Non-SM self-coupling strength can change cross-section and kinematics of double Higgs production

Double Higgs production combination

Nature 607 (2022) 60-68

Phys. Lett. B 843 (2023) 137745

HHH trilinear self-coupling modifier:
 -1.2<κ_λ<6.5 (CMS); -0.6<κ_λ<6.6 (ATLAS)

Double Higgs production combination

Nature 607 (2022) 60-68

Phys. Lett. B 843 (2023) 137745

 HHVV quartic coupling modifier: 0.7<κ_{2V}<1.4 (CMS); 0.1<κ_{2V}<2.0 (ATLAS)

Higgs boson self-couplings

 Single Higgs boson production and decays can be modified by self-coupling modifier through NLO EW correction

Double Higgs + Single Higgs Combination

Phys. Lett. B 843 (2023) 137745

 Single Higgs measurements provide additional sensitivity to trilinear self-coupling

Double Higgs + Single Higgs Combination

Phys. Lett. B 843 (2023) 137745

 Combined single-Higgs and double-Higgs analyses provide results with fewer assumptions

Chen Zhou (Peking U)

Summary

- LHC experiments continue to deliver many interesting Higgs physics results
 - a portrait of the Higgs boson
 - first evidence of $H \rightarrow Z\gamma$ decay
 - etc.
- Run 3 has started and LHC experiments are taking good quality data with high efficiency
 - please stay tuned!

Higgs physics studies in electroweak and top measurements

First observation of WWy production

arxiv:2310.05164 submitted to PRL

- First observation (5.6σ) of WWy production
 - Provide the best sensitivity for Yukawa couplings between Higgs and light quarks

Observation of four top production

<u>Eur. Phys. J. C 83 (2023) 496</u>

Phys. Lett. B 847 (2023) 138290

- Observation by ATLAS and CMS experiments independently
 - this process is extremely rare compared to top-pair production, but it is already a measurement limited by systematics
- Results provides sensitivity to the Higgs-top Yukawa coupling

Search for BSM Higgs production and decay

Search for Higgs→invisible decay

- Higgs→invisible decay is favored by so-called "Higgs portal" model
 - where Dark Matter interacts with known particles through the Higgs boson
- Run 2 Higgs→invisible results:
 - ATLAS: BR<11% (<u>Phys. Lett. B 842</u> (2023) 137963)
 - CMS: BR<15% (<u>EPJC 83 (2023) 933</u>)
- Results are interpreted as limit on DM-nucleon scattering in Higgs portal model

Eur. Phys. J. C 83 (2023) 933

Search for Higgs exotic decay

Higgs decays to exotic particles predicted by various BSM models: additional SM-neutral singlet, minimal composite Higgs models, two-Higgs-doublet-like models, axion-like particle, etc.

H→Za→IIγγ

Low-mass pseudoscalar a decays to two merged photons

arxiv:2311.00130

a

a

Η

Search for heavy resonances

CMS-PAS-HIG-21-011

Search for resonance X decay to H/Y+H

• motivated by extended H sector, extra dimensions, etc.

Excess of X \rightarrow Y(bb)+H($\gamma\gamma$) at mX=650 GeV and mY=90 GeV

• 3.8σ local, 2.8σ global

Interesting numbers from other searches

- $X \rightarrow \tau \tau$: 90-100 GeV excess, 3.1 σ local, 2.7 σ global
- X \rightarrow WW: 650 GeV excess, 3.8 σ local, 2.6 σ global
- $X \rightarrow \gamma \gamma$: 95 GeV excess, 2.9 σ local, 1.3 σ global

Chen Zhou (Peking U)

Thank you!

MIP 2024

School of Physics, PKU, Beijing, China 19-22 April, 2024

Workshop on M<mark>U</mark>on Physics at the Intensity and Precision Frontiers

SCIENTIFIC PROGRAMME COMMITTEES

1. Muon Sources R&D

- 2. Muon Precision Measurements
- 3. Muon Rare Process Searches
- 4. Muon Applications
- 5. Theoretical Muon Physics
- 6. Future Experiments & Muon Colliders

Local Organizing Committee (by alphabet):Yong Ban (PKU)QinghorYuanning Gao (PKU)Qiang LQite Li (Co-Chair, PKU)Yajun MXiaohu Sun (PKU)DayongSigung Wang (PKU)ZhengwChen Zhou (Co-Chair, PKU)

lphabet): Qinghong Cao (PKU) Qiang Li (Co-Chair, PKU) Yajun Mao (PKU) Dayong Wang (PKU) Zhengwei Yang (PKU)

Advisory Committee (by alphabet) Chao-Hsi Chang (ITP) Yuanning Gao (PKU) Xiaogang He (SJTU) Yoshitaka Kuno (Osaka/USTC) Jingyu Tang (USTC) Hongwei Zhao (IMP) Wenlong Zhan (IMP)

et): Shenjian Chen (NJU) Tao Han (PITT) Haibo Li (IHEP) Tsutomu Mibe (KEK) Bangjiao Ye (USTC) Zhengguo Zhao (USTC)

Program Committee (by area and alphabet): Chair: Jingyu Tang (USTC), Deputy Chair: Liang Li (SJTU) Muon Sources: Yu Bao (IHEP), Huan Jia (IMP) Muon Precision Measurements: Kim Siang Khaw (SJTU), Liang Li (SJTU) Muon Rare Processes: Zhengyun You (SYSU), Ye Yuan (IHEP) Muon Applications: Lei Shu (FDU), Fanlong Ning (ZJU), Qite Li (PKU) Theory: Yi Liao (SCNU), Wei Liao (ECUST) Muon Future Experiments: Jian Tang (SYSU), Qiang Li, Chen Zhou (PKU)

Contact: qliphy0@pku.edu.cn Website: https://indico.cern.ch/event/1356341/

Coupling modifier ("kappa")

- Leading order motivated framework: assign coupling modifier to each (effective) interaction vertex (e.g. κ_W, κ_t...)
- In this framework, production cross section times decay branch fraction of i→H→f can be parameterized as

$$\sigma_i \times B_f = \frac{\sigma_i(\boldsymbol{\kappa}) \times \Gamma_f(\boldsymbol{\kappa})}{\Gamma_H},$$

- (this allows for a consistent treatment of production and decay)
- Total width of Higgs boson can be expressed as

$$\Gamma_H(\boldsymbol{\kappa}, B_{\mathrm{i.}}, B_{\mathrm{u.}}) = \kappa_H^2(\boldsymbol{\kappa}, B_{\mathrm{i.}}, B_{\mathrm{u.}}) \Gamma_H^{\mathrm{SM}}$$

 $B_{i.}$ = BSM contribution to BR of invisible decays which are identified through a missing transverse momentum signature $B_{u.}$ = BSM contribution to BR of undetected decays to which none of the analyses in the combination are sensitive

ATLAS Na

Nature 607 (2022) 52-59

Nature 607 (2022) 60-68

- Assume no BSM contribution in loop-induced processes (ggF, H→γγ, etc.) or total width. Resolve ggF and Hγγ effective vertices
- Good agreement with the SM across 3 orders of magnitude of particle mass

• Not resolving ggF and Hyy effective vertices (and introducing coupling modifiers κ_g , κ_γ)

- assume Binvisible=Bundetected=0
- All coupling modifiers are measured to be compatible with the SM

Chen Zhou (Peking Ü)

• Not resolving ggF and Hyy effective vertices (and introducing coupling modifiers κ_g , κ_y)

- constrain $B_{invisible}$ and $B_{undetected}$ using $H \rightarrow invisible$ analysis and $\kappa_V < 1$
- Both invisible and undetected BR's are compatible with zero

Chen Zhou (Peking U)

ATLAS Nature 607 (2022) 52-59

Nature 607 (2022) 60-68

- κ_v for all vector bosons and κ_F for all heavy fermions are measured
- SM prediction is within 95% CL contour of measurement result

Higgs couplings to c quarks

- Constraints from ATLAS combination of VH(bb) & VH(cc), and Higgs *p*^T differential XS of H→γγ & H→ZZ:
 - -1.61<κ_c<1.70 (B_{BSM}=0)
 - -2.63<к_c<3.01 (Ввзм profiled)

JHEP05(2023)028

Interpretation with coupling modifiers $H \rightarrow ZZ^* \rightarrow 4I$

- Interpretation from transverse momentum distribution:
 - Constraints on the trilinear selfcoupling of the Higgs boson (κ_{λ}):
 - -5.4<κ_λ<14.9
 - can be used in future single and double Higgs boson combinations
 - Constraints on the Higgs boson couplings to b and c quarks (kb and kc):
 - $-5.6 < \kappa_b < 8.9$; $-20 < \kappa_c < 23$ (using only shape information)
 - complementary with constraints from H→cc decay
 JHEP 08 (2023) 040

EFT interpretation from Higgs measurements

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

Parameterize the signal strengths, (XS*BR)meas/ (XS*BR)sM, directly with Wilson coefficients of d=6 SMEFT operators

ATLAS-CONF-2023-052

- Rotate the SMEFT basis cj to eigenvector cj' and fit sensitive eigenvectors simultaneously
 - these eigenvectors are obtained from identifying groups of operators with similar impact and performing eigenvector decomposition for the covariance matrix of the measurement

ATLAS-CONF-2023-052 Chen Zhou (Peking U)

Wilson coefficients

- All measured parameters are consistent with the SM expectation within their uncertainties
- Six (five) parameters are almost exclusively measured by a single decay (production) mode

From a simultaneous fit; linear only results

Chen Zhou (Peking U)

ATLAS-CONF-2023-052

$$(\sigma \times B)_{\text{SMEFT}}^{i,k',H \to X} = \sigma_{\text{SMEFT}}^{i,k'} \times B_{\text{SMEFT}}^{H \to X} = \left(\sigma_{\text{SM}}^{i,k'} + \sigma_{\text{int}}^{i,k'} + \sigma_{\text{BSM}}^{i,k'}\right) \times \left(\frac{\Gamma_{\text{SM}}^{H \to X} + \Gamma_{\text{int}}^{H \to X} + \Gamma_{\text{BSM}}^{H \to X}}{\Gamma_{\text{SM}}^{H} + \Gamma_{\text{int}}^{H} + \Gamma_{\text{BSM}}^{H}}\right)$$

- Comparison of the linear model and the linear+quadratic model shows sizeable sensitivity to operators suppressed by Λ^4

Interpretation of fiducial differential XS with EFT

- Differential distribution of Higgs transverse momentum are also affected by a few SMEFT operators (e.g. CHG, CtG, CtH)
 - $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ channels are used for the pT(H) interpretation
- A rotation in the parameter space is performed to define a new set of coefficients which are decorrelated

From 3 fits with one parameter of interest

Parameter	Observed 68% CL interval		Expected 68% CL interval	
	stat. + syst.	stat. only	stat. + syst.	stat. only
c_{HG}	$0.000^{+0.003}_{-0.003}$	$0.000^{+0.002}_{-0.002}$	$0.000^{+0.003}_{-0.003}$	$0.000^{+0.002}_{-0.002}$
c_{tG}	$0.00^{+0.08}_{-0.09}$	$0.00^{+0.05}_{-0.05}$	$0.00^{+0.08}_{-0.09}$	$0.00^{+0.05}_{-0.05}$
c_{tH}	$0.1^{+1.0}_{-1.1}$	$0.1^{+0.7}_{-0.7}$	$0.0^{+1.0}_{-1.1}$	$0.0^{+0.7}_{-0.7}$

From a simultaneous fit

- Using the same decay channels, the constraints from differential XS are weaker than STXS
 - differential measurements are inclusive in production mode
 - STXS separate different production modes whose cross-sections are affected in different ways by the different operators

AS-CONF-2023-052

Wilson coefficient	Operator	Wilson coefficient	Operator
c_H	$(H^{\dagger}H)^3$	$c_{Oq}^{(1,1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$
$c_{H\square}$	$(H^\dagger H) \square (H^\dagger H)$	$c_{Oa}^{(1,8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$
c_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$	$c_{O_{a}}^{(3,1)}$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$
c_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$c_{2}^{(3,8)}$	$(\bar{O}\sigma^i T^a \gamma_\mu O)(\bar{a}\sigma^i T^a \gamma^\mu a)$
C _{HDD}	$\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$	Qq	$(\bar{a}\sigma^{i}\alpha, a)(\bar{a}\sigma^{i}\alpha^{\mu}a)$
CHG	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$		$(qo \gamma \mu q)(qo \gamma q)$
C _{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	C _{tu}	$(t\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$
C _{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	$c_{tu}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{u}T^a\gamma^\mu u)$
CHWB	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	$c_{td}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$
C ⁽¹⁾	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{1}\gamma^{\mu}l_{1})$	$c_{td}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{d}T^a\gamma^\mu d)$
$c_{H122}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{2}\gamma^{\mu}l_{2})$	$c_{Qu}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$
$c_{HI33}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{3}\gamma^{\mu}l_{3})$	$c_{Qu}^{\scriptscriptstyle{(8)}}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$
$c_{Hl,11}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{1}\tau^{I}\gamma^{\mu}l_{1})$	$c_{oldsymbol{Q}d}^{\scriptscriptstyle (1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$
$c_{Hl,22}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$	$c_{Qd}^{\scriptscriptstyle (8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$
$c_{Hl,33}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{3}\tau^{I}\gamma^{\mu}l_{3})$	$c_{tq}^{_{(1)}}$	$(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$
$c_{He,11}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{1}\gamma^{\mu}e_{1})$	$c_{tq}^{_{(8)}}$	$(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$
$c_{He,22}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{2}\gamma^{\mu}e_{2})$	СеН,22	$(H^{\dagger}H)(\bar{l}_{2}e_{2}H)$
СНе,33	$(H^{\dagger}i\widetilde{D}_{\mu}H)(\bar{e}_{3}\gamma^{\mu}e_{3})$	СеН,33	$(H^{\dagger}H)(\bar{l}_{3}e_{3}H)$
$c_{Hq}^{(1)}$	$(H^{\dagger}i D_{\mu}H)(\bar{q}\gamma^{\mu}q)$	C _{uH}	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\widetilde{H})$
$c_{Hq}^{\scriptscriptstyle (3)}$	$(H^{\dagger}iD_{\mu}^{T}H)(\bar{q}\tau^{T}\gamma^{\mu}q)$	c_{tH}	$(H^{\dagger}H)(\bar{Q}\widetilde{H}t)$
c _{Hu}	$(H^{\dagger}i\overleftarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c _{bH}	$(H^{\dagger}H)(\bar{Q}Hb)$
C_{Hd}	$(H^{\dagger}i D_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$	C _{tG}	$(\bar{Q}\sigma^{\mu\nu}T^At)\widetilde{H}G^A_{\mu\nu}$
c_{HQ}	$(H^{\dagger}i D_{\mu}H)(Q\gamma^{\mu}Q)$	c_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \tilde{H} W^I_{\mu\nu}$
c_{HQ}	$(H^{\dagger}i D^{\dagger}_{\mu}H)(Q\tau^{\prime}\gamma^{\mu}Q)$	c_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\widetilde{H}B_{\mu\nu}$
C _{Ht} C _{Hb}	$(H^{\dagger}i D_{\mu}H)(t\gamma^{\mu}t) (H^{\dagger}i \overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	<i>c</i> _{<i>ll</i>,1221}	$(\bar{l}_1\gamma_\mu l_2)(\bar{l}_2\gamma^\mu l_1)$

ATLAS-CONF-2023-052 Chen Zhou (Peking U)

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

Parameterize the signal strengths, (XS*BR)meas/ (XS*BR)SM, directly with Wilson coefficients of d=6 SMEFT operators

ATLAS-CONF-2023-052

$$\mathcal{L}_{\mathrm{HEL}} = \mathcal{L}_{\mathrm{SM}} + \sum_{j} \mathcal{O}_{j} f_{j} / \Lambda^{2}$$

- CMS provided constraints on the parameters of the Higgs Effective Lagrangian model
- For many of the parameters these results represented the strongest constraints

CMS-PAS-HIG-19-005

Higgs anomalous coupling

- Studied individually
- Significant interference effects for certain values is evident

H→WW*

Higgs anomalous coupling

CMS-PAS-HIG-22-008

HVV vertex SMEFT (Warsaw basis)

$$\begin{split} \delta a_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(2c_{\rm H\Box} + \frac{6e^2}{s_{\rm w}^2} c_{\rm HWB} + (\frac{3c_{\rm w}^2}{2s_{\rm w}^2} - \frac{1}{2})c_{\rm HD} \right), \\ \kappa_1^{ZZ} &= \frac{v^2}{\Lambda^2} \left(-\frac{2e^2}{s_{\rm w}^2} c_{\rm HWB} + (1 - \frac{1}{2s_{\rm w}^2})c_{\rm HD} \right), \\ a_2^{ZZ} &= -2\frac{v^2}{\Lambda^2} \left(s_{\rm w}^2 c_{\rm HB} + c_{\rm w}^2 c_{\rm HW} + s_{\rm w} c_{\rm w} c_{\rm HWB} \right), \\ a_3^{ZZ} &= -2\frac{v^2}{\Lambda^2} \left(s_{\rm w}^2 c_{\rm HB} + c_{\rm w}^2 c_{\rm HW} + s_{\rm w} c_{\rm w} c_{\rm HWB} \right), \end{split}$$

Coupling	Observed	Expected
$c_{\mathrm{H}\square}$	$-0.76^{+1.43}_{-3.43}$	$0.0\substack{+1.37 \\ -1.84}$
c_{HD}	$\textbf{-0.12}^{+0.93}_{-0.32}$	$0.0\substack{+0.43 \\ -0.30}$
$c_{\rm HW}$	$0.08\substack{+0.43 \\ -0.87}$	$0.0\substack{+0.37 \\ -0.48}$
$c_{\rm HWB}$	$0.17\substack{+0.88 \\ -1.79}$	$0.0\substack{+0.77 \\ -0.96}$
c_{HB}	$0.03\substack{+0.13 \\ -0.26}$	$0.0\substack{+0.11 \\ -0.14}$
$c_{\mathrm{H} ilde{\mathrm{W}}}$	$-0.26\substack{+0.67\\-0.50}$	$0.0\substack{+0.48\\-0.52}$
c _{HŴB}	$-0.54^{+1.37}_{-1.03}$	$0.0\substack{+0.99 \\ -1.07}$
$c_{\mathrm{H} ilde{B}}$	$-0.08\substack{+0.20\\-0.15}$	$0.0\substack{+0.15 \\ -0.16}$

HEFT currently used for most interpretations of HH

ATL-PHYS-PUB-2022-019 Chen Zhou (Peking U)

CMS HH→bbWW

- Results are interpreted in HEFT
- BSM coupling c₂(=c_{ttHH}) is constrained between -0.8 and 1.3

ATLAS HH→bbyy

ATLAS

arxiv:2310.12301

- Results are interpreted in both HEFT and SMEFT
- Excluded four of the considered seven HEFT benchmark points

Сн

CMS HH→bbWW

CMS released HH→bbWW search result (with significant improvement from the partial run-2 result)

ATLAS HH→bbγγ

ATLAS reoptimize $HH \rightarrow bb\gamma\gamma$ to optimize both

HHH and HHVV couplings

Chen Zhou (Peking U)

Observed

Expected

95% C

68% Cl

10

Kλ

8

Observed

Expected

68% C

K_{2V}