The R&D of the New Glass Scintillator for CEPC HCAL

Sen QIAN, Zhehao HUA,

qians@ihep.ac.cn; On Behalf of the GS R&D Group, The Institute of High Energy Physics, CAS

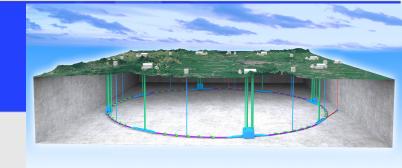
IAS-HEP 2024 - Conference: Experiment / Detector 2024. 01. 23th

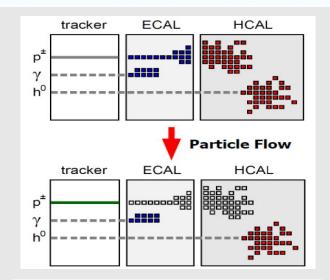
Outline

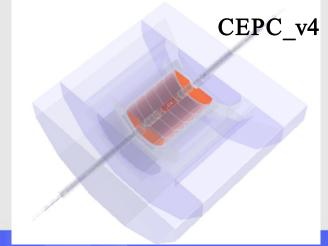
- 1. The GS-HCAL of CEPC;
- 2. The Motivation and Design of GS;
- 3. The progress of the R&D of GS;
- 4. Summary and Next Plan;

1.1. The GS-HCAL of CEPC

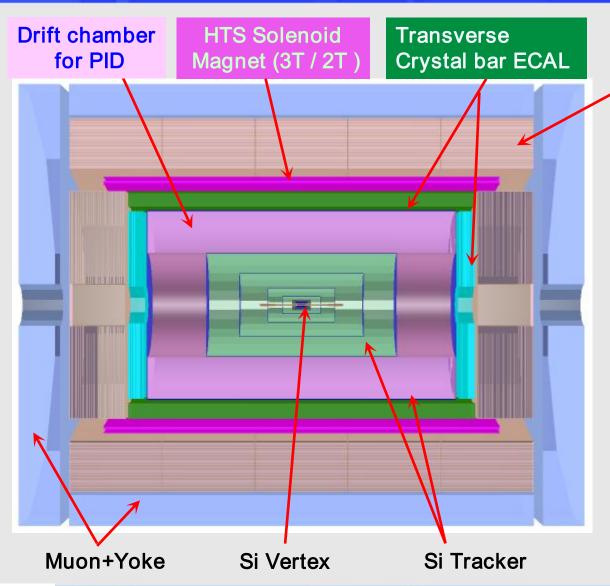
Future electron-position colliders (e.g. CEPC)


- Main physical goals: precision measurements of the Higgs and Z/W bosons
- Challenge: unprecedented jet energy resolution $\sim 30\%/\sqrt{E(GeV)}$


CEPC detector: highly granular calorimeter + tracker


- Boson Mass Resolution (BMR) ~4% has been realized in this baseline design
- Further performance goal: BMR $4\% \rightarrow 3\%$
- Dominant factors in BMR: charged hadron fragments & HCAL resolution

New Option: Glass Scintillator HCAL (GS-HCAL)

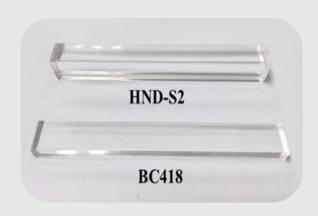

- Higher density provides higher energy sampling fraction
- Doping with neutron-sensitive elements: improve hadronic response (Gd)
- More compact HCAL layout (given 4~5 nuclear interaction lengths in depth)

The 4th Conceptual Detector Design

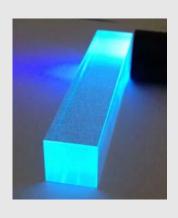
Scint Glass PFA HCAL

Advantage: Cost efficient, high density

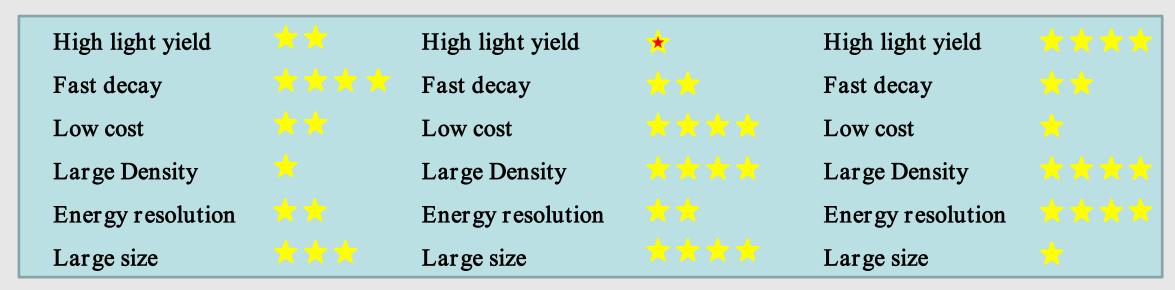
Challenges: Light yield, transparency, massive production.


- ♦ Further performance goal: BMR 4%→3%
- Dominant factors in BMR: charged hadron fragments & HCAL resolution
 - Higher density provides higher energy sampling fraction
 - Doping with neutron-sensitive elements: improve hadronic response (Gd)
 - More compact HCAL layout (given 4~7 nuclear interaction lengths in depth)

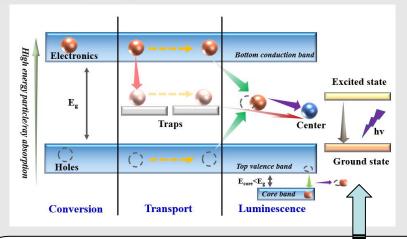
Outline

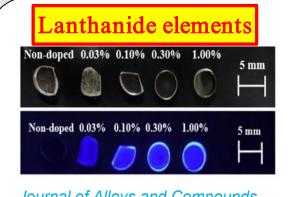

- 1. The GS-HCAL of CEPC;
- 2. The Motivation and Design of GS;
- 3. The progress of the R&D of GS;
- 4. Summary and Next Plan;

2.0 What is the Glass Scintillator?

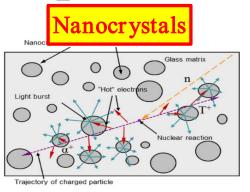

Plastic Scintillator

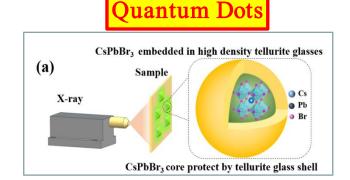
Glass Scintillator


Crystal Scintillator


2.1 Target of Glass Scintillator

Key parameters	Value	Remarks		
> Tile size	$\sim 30 \times 30 \text{ mm}^2$	Reference CALICE-AHCAL, granularity, number of channels		
➤ Tile thickness	~10 mm	Energy resolution, Uniformity and MIP response		
> Density	5-7 g/cm ³	More compact HCAL structure with higher density		
> Intrinsic light yield	1000-2000 ph/MeV	High an intringia IV can talanata lavvan tuan amittana		
> Transmittance	~75%	Higher intrinsic LY can tolerate lower transmittance		
➤ MIP light yield	~150 p.e./MIP	Needs further optimizations: e.g. SiPM-glass coupling		
Energy threshold	~0.1 MIP	Higher light yield would help to achieve a lower threshold		
Scintillation decay time	<300 ns	Mitigation pile-up effects at CEPC Z-pole (91 GeV)		
> Emission spectrum	Typically 350-600 nm	To match SiPM PDE and transmittance spectra		


2.2 The Design of the Glass Scintillator


- > Scintillation mechanism---- Luminescence Center
- ➤ Conversion—photoelectric effect and Compton scattering effect;
- > Transport—electrons and holes migrate;
- > Luminescence—captured by the luminescent center ions

Journal of Alloys and Compounds 782 (2019) 859-864

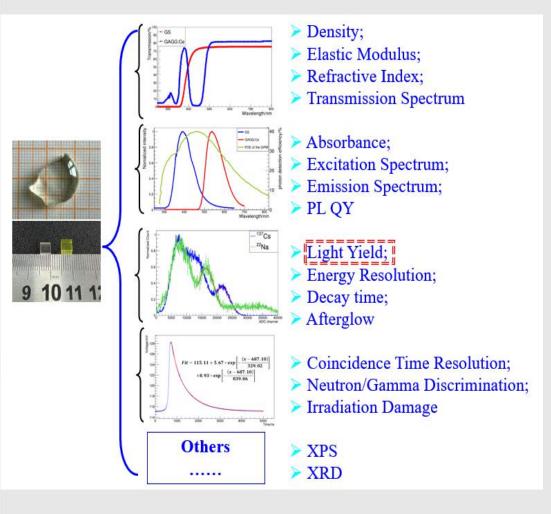
IEEE TNS 60 (2) 2013

Optics Letters 46(14) 3448-3451 (2021)

Vol. 9, No. 12 / 2021 / Photonics Research

- High Light Yield: Lanthanide for the Luminescence Center: Cerium (Ce);
- High Density and Low radioactivity background: Gadolinium (Gd) ✓; lutetium (Lu) X

2.3 Large Area Glass Scintillator Collaboration



- -- The Glass Scintillator Collaboration Group established in Oct.2021, only 5 groups join together;
- -- There are 3 Institutes of CAS, 5 Universities, 3 Factories join us for the R&D of GS;
- -- The Experts of the GS in the University, Institute and Industry are still welcomed to join us (qians@ihep.ac.cn).

2.4 The Scintillator Test Facilities

> The Scintillator Test System

- Spectroscopy: Transmission/Absorption, PL-PLE, XEL
- Nuclear radiation detection: Light yield, Energy resolution,

 MIP response, n/γ Discrimination
- Time characteristics: Rise time, Decay time, Afterglow,
 Coincidence time resolution
- Reliability: Aging test, Radiation resistance characteristics

The published papers of different Scintillator samples tested in Lab

- 1. Optical Materials; 105 109964; 2020; GAGG
- 2.Optical Materials; 125 112102; 2022; Sn-doped glass
- 3. Optical Materials; 130 112585; 2022; Aluminoborosilicate glass
- 4. Journal of Instrumentation; 17 T08001; 2022; CLLB
- 5. Journal of Instrumentation; 17 T09010; 2022; LYSO

Radioactive Sources Test -- Energy Spectrum -- Light Yield

Voltage system

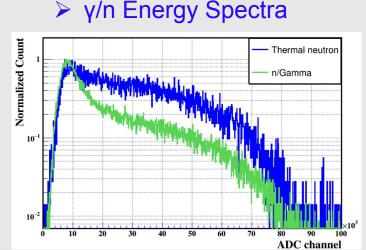
Radiation source

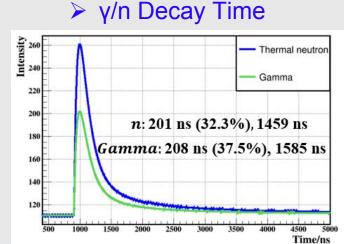
Dark box

SiPM Sample

Driver board

Driver board

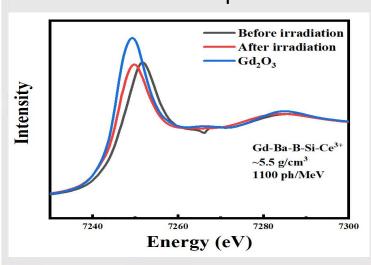

• In IHEP Radioactive Sources Station;


• gamma: 137Cs, 60Co, 133Ba,

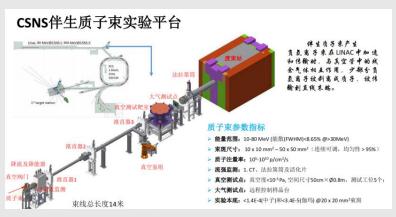
• neutron: 252Cf, Am-Be

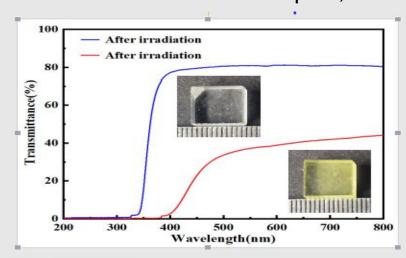
• electron: 90Sr-90Y, 22Na

Through the waveform sampling data acquisition system, we can obtain Light Yield, Energy Resolution and Decay Time of the scintillator.

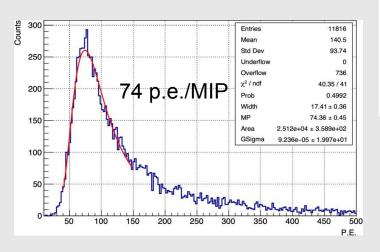


Special Condition TEST Platform

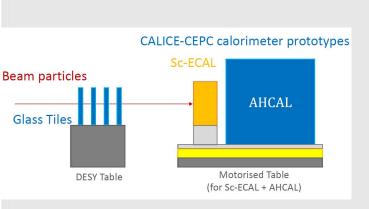

> IHEP--XAFS


Study the elements influence of GS sample

> IHEP-CSN-- P Beam

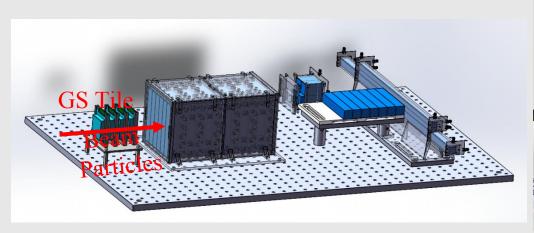

Study the anti-irradiation characteristics of samples;

CERN-MUON beam


Study the particle interaction in GS sample with MUON

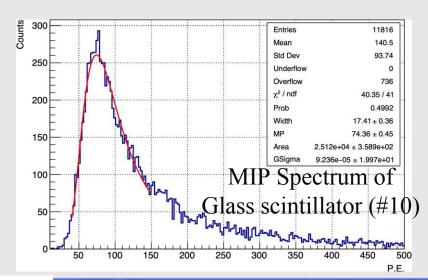
2.5 Beam Test Experiments

CERN Muon-beam


- 11 glass tiles tested at CERN (2023, May 16)
- CERN Proton Synchrotron (10 GeV muon beam)
- Measure the MIP response of glass samples

DESY Electron-beam

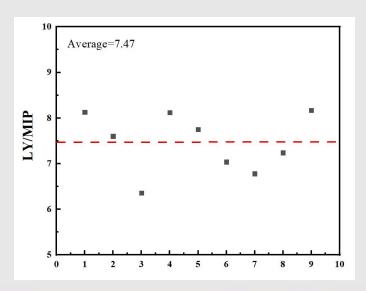
- 4+9 glass scintillator (CERN8-11 + DESY1-9) (2023, Oct 2)
- DESY II Electron Synchrotron (5 GeV electron beam)
- Measure the MIP response of new glass samples



(1) MUON Beam Test of GS Samples

☐ Beam test results at CERN

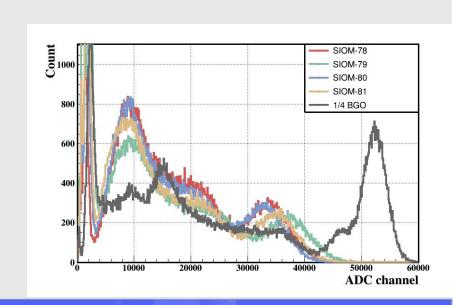
- ➤ Each glass sample was covered by the Teflon tape and readout by an individual SiPM (6*6 mm²)
- ➤ The density and composition of these glass samples are the same: ~5.1 g/cm³ & Gd-Al-Ba-B-Si-Ce
- ➤ Preliminary results look promising: typical MIP response (in 10 mm) is 60 100 p.e./MIP



CERN	Size (mm ³)	T@420 nm (%)	LY (ph/MeV)	MIP_LO (p.e./MIP)	Normalized MIP_LO (10 mm)
#1	33.5*27.6*5.1	69	551	15	29
#2	30.2*29.5*6.6	61	645	35	53
#3	29.9*28.1*10.2	70	617	66	65
#4	37.2*35.1*5.3	80	571	31	59
#5	40.0*35.1*4.2	78	571	38	91
#6	30.3*29.8*9.4	55	484	67	71
#7	34.8*34.8*7.5	65	505	60	80
#8	27.8*25.6*5.0	81	840	41	82
#9	34.6*34.7*7.5	49	352	69	92
#10	34.7*35.2*7.4	64	524	74	100
#11	30.5*30.0*8.7	81	767	73	84

(2) Electron Beam Test of GS Samples

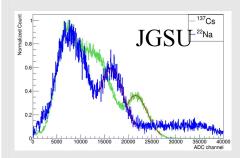
☐ Beam test results at DESY


- ➤ Each glass sample was covered by the Teflon tape and readout by an individual SiPM (6*6 mm²)
- ➤ The density, cell size and composition of these glass samples are the same: ~6 g/cm³ & 40*40*10 mm³ & Gd-Al-B-Si-Ce
- > Typical MIP response is 80 90 p.e./MIP, the average ratio between the LY and MIP light output is ~ 7.5

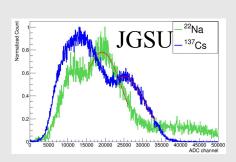
DESY	T @ 420 nm (%)	LY (ph/MeV)	MIP_LO (p.e./MIP)	LY/MIP_LO
#1	16.8	626	77	8.13
#2	77	684	90	7.6
#3	75	572	90	6.38
#4	84	788	97	8.12
#5	78	674	87	7.75
#6	64	507	72	7.04
#7	73	576	85	6.78
#8	81	673	93	7.24
#9	80	768	94	8.17

Outline

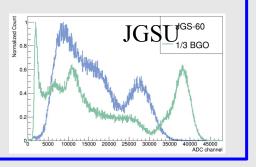
- 1. The GS-HCAL of CEPC;
- 2. The Motivation and Design of GS;
- 3. The progress of the R&D of GS;
- 4. Summary and Next Plan;

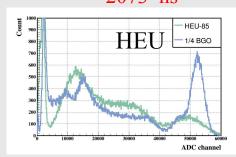


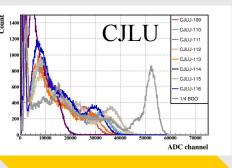
3.0 The GS Samples produced (>600)



3.1 Borosilicate Glass (Gd-Al-B-Si-Ce3+) --GS1


- Density~4.5 g/cm³
- LY=802 ph/MeV
- ER=26.8%
- Decay=262 (18%) 1235 ns


- Density~6.0 g/cm³
- LY>1000 ph/MeV
- ER=49.6%
- Decay=847 ns


- Density~6.0 g/cm³
- LY~1100 ph/MeV
- ER=24.4%
- LO in 1μs=899 ph/MeV
- Decay=92 (8%), 473 ns

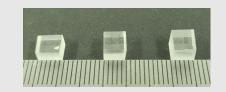
- Density~5.9 g/cm³
- LY~1620 ph/MeV
- ER=25.6%
- LO in $1\mu s=543 (34\%)$
- Decay=131 (5%), 2073 ns

- Density~6.0 g/cm³
- LY=1241 ph/MeV
- ER=23.8%
- LO in 1µs=859 (70%)
- Decay=87 (4%), 554 ns

2021.11

2022.11

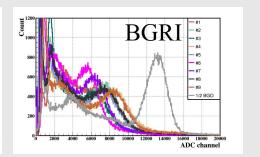
2023.02


2023.12

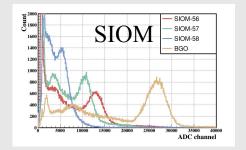
2024.01

- There are 5 types of GS for the study, and focous on the GS1, **Borosilicate Glass** for better performance;
- Now, the Density~6.0 g/cm³, LY>1200 ph/MeV, ER=23.8%, could be accept to be the candidate for GS-HCAL;
- \triangleright But the Decay time ~ 500 ns, still need to improve.

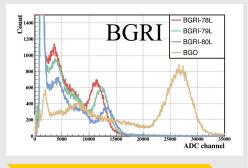
3.2 Large size glass (Gd-Al-B-Si-Ce3+) --GS1


■ Size=30*27.5*9 mm³

BGRI_137Cs


- Density=5.1 g/cm³
- LY=466 ph/MeV
- ER=None

- Size=30*30*9 mm³
- Density=5.1 g/cm³
- LY=767 ph/MeV
- ER=None


- Size=40*40*10 mm³
- Density=6.0 g/cm³
- LY=788 ph/MeV
- ER=48.4%
- Decay=87 (2%), 1024 ns

- Size=40*40*10 mm³
- Density=6.0 g/cm³
- LY=1198 ph/MeV
- ER=33.0%
- LO in 1μs=607 (51%)
- Decay=117 (3%), 1368 ns

- Size=10*10*5 mm³
- Density=6.0 g/cm³
- LY=1235 ph/MeV
- ER=24.0%
- LO in 1μs=897 (73%)
- Decay=89 (6%), 588 ns

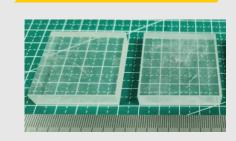
2022.10

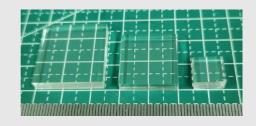
The Bottleneck:

2023.04

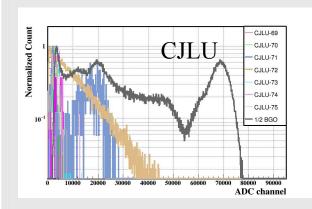
BGRI

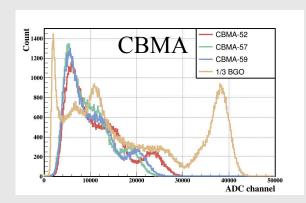
BGRI-42


BGRI-43

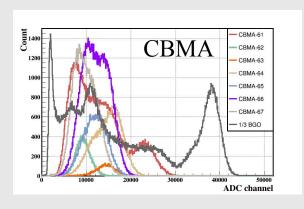

2023.10

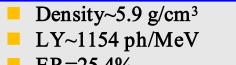
2023.11

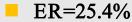

2023.12

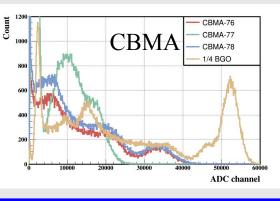

- 1. How to ensure the performance stability of large size glass sample?
- 2. How to improve the light collection efficiency when coupling large size glass and SiPM?

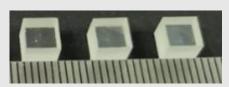
3.3 Silicate glass (Gd-Ga-Si-Ce3+ glass) —GS5


- Density~5.0 g/cm³
- LY>2000 ph/MeV?
- ER=None
- Decay=287 ns

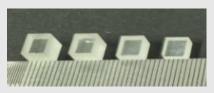



- Density~5.9 g/cm³
- LY=1058 ph/MeV
- ER=23.7%
- Decay=97 ns (44%), 352 ns

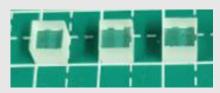

- Density~5.9 g/cm³
- LY=1040 ph/MeV
- ER=25.8%
- Decay=107 (43%), 450 ns



- LO in 1μs=1137 (98%)
- Decay=92 (39%), 323 ns

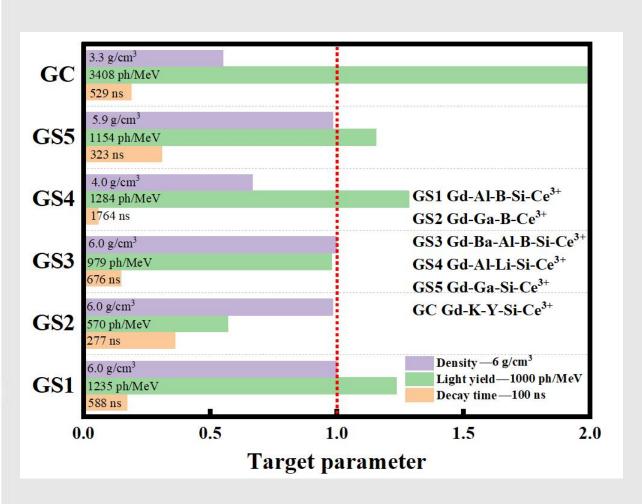


- 2023.07


2023.08

2023.08

2023.12

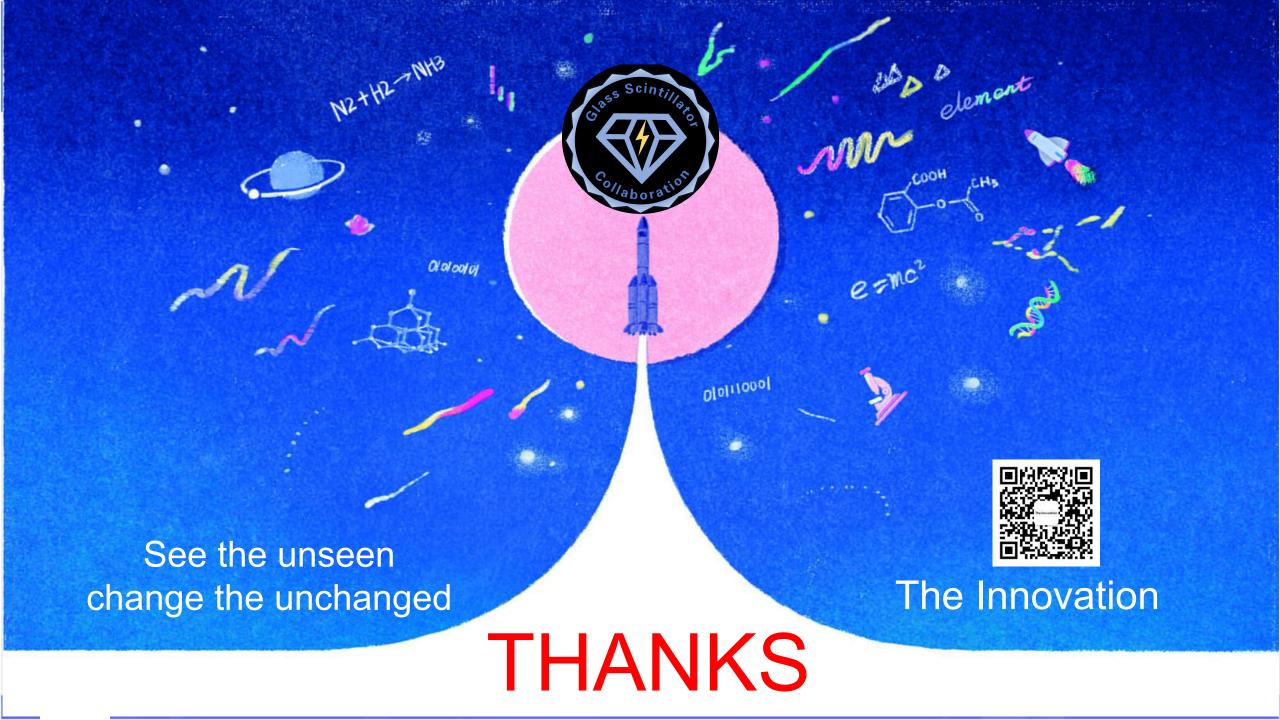

- There are 5 types of GS for the study, and the GS5, Silicate Glass is to be the other option for us;
- Now, the Density~6.0 g/cm³, LY>1100 ph/MeV, ER=25.4%, could be accept to be the candidate for GS-HCAL;
- > But the preparation and performance stability of glass still need to be further investigated.

Outline

- 1. The GS-HCAL of CEPC;
- 2. The Motivation and Design of GS;
- 3. The progress of the R&D of GS;
- 4. Summary and Next Plan;

4.1 Summary of GS

Glass scintillator of high density and light yield


- ◆ GS1: Gd-Al-B-Si-Ce³+ glasses: (Borosilicate Glass)
- 6.0 g/cm³ & 1235 ph/MeV with 24.0% @662keV & 588 ns
- ◆ GS5: Gd-Ga-Si-Ce³+ glasses: (Silicate glass)
- 5.9 g/cm³ & 1154 ph/MeV with 25.4% @662keV & 323 ns
 - Ultra-high density **Tellurite Glass**—6.6 g/cm³
 - High light yield Glass Ceramic—3500 ph/MeV
 - Fast Decay Time **Pr**³⁺-**doped Glass**—100 ns
 - Large size Glass—51mm*51mm*10mm

4.2 Next Plan for GS R&D

Gd-R-B-Si-Ce³⁺ (R=Al, Ga) oxyfluoride is still the focus of future research:

- The performance of glass is further improved from energy band/composition engineering;
- > Shorten the scintillation decay time of the glasses (<300 ns);
- > Repeated preparation and performance optimization of large size glass;
- ➤ Improve raw material purity → improve scintillation performance;
- > Explore the structure, radiation resistance and mechanical properties of the glasses.

Promote Applied Research of GS in CEPC, FCC,

