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International Large Detector (ILD)

☞ International Linear Collider (ILC)
project in Japan:

➠ energy range (baseline design):
staged project starting at 250 GeV

➠ ILC is planned with two experiments

➠ TPC is the central tracker for
International Large Detector (ILD)

☞ ILD components:

➠ vertex detector

➠ few layers of silicon tracker

➠ gaseous TPC

➠ ECAL/HCAL/FCAL

➠ superconducting coil (3.5 T)

➠ muon chambers in iron yoke

☞ ILD requirements:

➠ momentum resolution:
δ(1/pT) ≤ 2 × 10−5GeV−1

➠ impact parameters: σ(rϕ) ≤ 5µm

➠ jet energy resolution:
σE/E ∼ 3− 4%
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Detector Optimization
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☞ TPC point resolution is x10 worse than Si

➠ would need x100 more points

➠ not always practical

➠ larger tracking volume

➠ include 2 inner Si layers (SIT) and
1 outer Si layer (SET)

☞ ILC flagship measurement

➠ recoil mass e+e− → Z(ll)X

➠ driven by both beam spread (σB) and
momentum resolution(σD)

➔ σB = 400 MeV from TDR

➔ σD = 300 MeV at Rout = 1.8 m

➔ σD = 400 MeV at Rout = 1.4 m
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Time Projection Chamber for ILD

TPC is the central tracker for
International Large Detector (ILD)

☞ Large number of 3D points (∼ 200)

➠ continuous tracking

☞ Particle identification

➠ dE/dx measurement

☞ Low material budget in front of the
calorimeters (Particle Flow Algorithm)

➠ barrel: ∼ 5%X0

➠ endplates: ∼ 25%X0

☞ Two gas amplification options:

➠ Gas Electron Multiplier (GEM)

➠ MicroMegas (MM)

➔ pad-based charge dispersion readout

➔ direct readout by the TimePix chip

☞ TPC Requirements in 3.5 T

➠ Momentum resolution:

➔ δ(1/pT) ≤ 9× 10−5GeV−1

➠ Single hit resolution:

➔ σ(rϕ) ≤ 100µm (overall)

➔ σ(Z) ≃ 400µm at z=0

➠ Tracking efficiency:

➔ 97% for pT ≥ 1GeV

➠ dE/dx resolution: 5%
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Large Prototype and TPC Mechanics

☞ Gravitational loads:

➠ self-weight of structure: 895 kg

➠ weight of modules: 1176 kg

➔ 84 modules

➔ 7 kg/super-module (4-ring)

➔ endplate

➠ total weight 2000 kg

LP endplate with 7 windows to receive
up to 7 fully equipped identical modules

8-ring: 4 modules combined in 1
super-module

ILD TPC is 3.5x size/B field of the
Large Prototype (LP) operating in

B=1 T
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Resistive Micromegas Prototype

☞ Pad size limits transverse resolution

➠ use resistive anode to spread charge

☞ Charge density function of time depen-
dent charge dispersion on 2D continuous
RC network:

ρ(r, t) = RC
2t

exp[−−r2RC
4t

]

R- surface resistivity
C- capacitance/unit area

Relative fraction of charge seen by pads
fitted by Pad Response Function (PRF)

Module readout with 6 FE cards bearing 4 AFTER ASICs chips (12-bit ADC)
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Trigger and DAQ

The test beam facility at DESY provides a 6 GeV
electron beam

☞ Beam, Laser, and Cosmic triggers are deployed

➠ A cosmic trigger based on

➔ 12 scintillator plates

➔ readout by silicon PMs

➔ SiPM signal discrimination and
coincidence logic with NIM modules

☞ Readout system and DAQ

➠ 120 Hz maximum event taking rate

➔ 6 ASICs chips are digitized in parallel
by 12-channel ADC

➔ 4 sequential iterations are needed
to readout a whole module

➔ irreducible dead-time of 8 ms
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Beam Test 2018 at DESY

☞ 4 new Micromegas modules
tested in November 2018 at
DESY facility (NIM paper)

➠ new endplate LP2

➠ 1-loop 2-Phase CO2 cooling

➠ improved mechanics:
99.9% good connections

➠ new grounding scheme:
encapsulated resistive anode
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Modules’ Quality

Measure the quality of connection
from pedestal rms and occupancy

☞ Due to error in electric circuit 2 pads in
each module are missing

➠ can be fixed in next production

☞ 1-4 missing pads in each module due
to bad pins in connector

Pedestal measured in B=1 T

Measured occupancy from
accumulated cosmic ray events

Very good electrical connection between
pads (PCB) and FEC (99.9%)
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Uniformity of the Charge Spread

☞ Calibration of the Pad Responce Func-
tion (PRF) is done for each z position

➠ σ ∼ 1.4mm is expected for

➔ R=2.5 MΩ/2
➔ 200 ns shaping time

➔ 200+50µm kapton

50 mm drift distance
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Residual Estimator and Corrections

The resolution is determined from
the same statistical sample utilized

for the track fit

☞ The geometric mean of inclusive and
exclusive residuals in the entire 3D
track fit provides unbiased resolution
estimator [R.Carnegie, et.al., NIM A538

372 (2005)]

σi =
√
σin · σi

ex

σ = xtrack − xhit

☞ Important requirements for σi:

➠ gaussian-like

➔ low fraction of outliers

➠ zero off-set

➔ systematic error

σrϕ as a function of anode voltage
(amplification):

find Vmesh = 370V to be optimal

☞ Corrections to be applied

➠ bias: determined by local RC properties

➠ distortions: driven by ExB effects

➠ alignment: measure with B=0 T data
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Transverse and Longitudinal Resolutions (B=1T)

The readout modules of the prototype
operate in a 1 T magnetic field

☞ The performance is estimated solely using the
central module

➠ a few pad rows on lower and upper mod-
ules exhibit degradation due to misalign-
ment of electrods inside the field cage and
the inhomogeneity of the resistive anode

☞ Fit data with:

σ2
rϕ/z(z) = σ2

rϕ0/z0 +
D2

⊥/∥
Neff

z

➠ σ0 - the resolution at z = 0,
Neff - the effective number of electrons

➠ Magboltz calculations yield D⊥/∥ with
approximately 3% precision
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Transverse and Longitudinal Resolutions (B=0T)

Data recorded at a 0 T magnetic field are
essential for computing the alignment

parameters of the modules

☞ A straight line is used as the track model

☞ Alignment primarily relies on data satisfying
stringent track quality criteria at B=0 T

➠ iteratively minimize the χ2 addressing ro-
tations and translations of the mod-
ules, with the central module serving as
a reference

➠ iterative procedure continues until the pa-
rameters fall withing their uncertainties

➠ achieve convergence of all alignment pa-
rameters after four iterations
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Track Distortions

Non-uniform E-field near module
boundaries induces ExB effects

☞ Track distortions in standard scheme

➠ reach about 0.5 mm at boundaries

➠ worth to minimize at design level

➠ accounted as systematic error

☞ Encapsulated scheme (2018) to reduce
distortions at the edges of modules

➠ mesh at ground (same as the frame)

➠ resistive anode at the +ve HV

ExB effect between modules is effectively suppressed

in the new scheme
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dE/dx Resolution

Measuring dE/dx resolution with LP
and extrapolating to ILD TPC

☞ Test arbitrary track lengths by randomly
combining hits from several real tracks to
create a pseudo track in the TB setup

☞ Estimated dE/dx resolution using a 70%
truncated mean for the ILD TPC

➠ σdE/dx = 4.9% for 192 hits (large ILD)

➠ σdE/dx = 5.7% for 144 hits (small ILD)
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Track Angle Effect

The primary goal is to achieve the
utmost point resolution for radial
high-momentum tracks emenating
from the Interaction Point (IP)

☞ Resolution degrades with deviation from
0 of the local angle between pad axis and
track (ϕ), due to fluctuations in cluster
size during ionization

☞ Conducted the experiment with the TPC
azimuthally rotated [−20◦,+10◦]

☞ Contribution from track angle effect:

σ2
rϕ = σ2

rϕ0 +
h2 tan2 ϕ

12
· cosϕ

N̂eff

N̂eff ≃ 5.1 is expected for h=7 mm
[M. Kobayashi, et al., NIM A (764), 394]
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Extrapolation to ILC Operational Conditions

Extrapolation of resolution for a
magnetic field of 3.5 T and 2.35 m
drift length (ILD design) relies on

a simple empirical function

☞ Transverse diffusion D⊥ is deter-
mined using a Magboltz simulation

☞ Values for σrϕ0 and Neff are de-
rived from the fit to the measured
resolution

☞ Impact of the dynamic gate using
a large apperture GEM is demon-
strated with an electron transmis-
sion of 83% [M. Kobayashi, et al.,

NIM A (918), 41-53]

➠ insights into the perspectives for
TPC at circular colliders will
be presented in P. Colas talk
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Resolution of about 100µm across the entier
drift length in the ILD TPC is feasible

when stringent control is maintained over
gas quality, and impurities are minimized.
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Conclusions

☞ Extensive R&D work has been undertaken for the Micromegas-
based readout prototype modules, marking a crucial phase in en-
gineering toward the final design of a TPC for ILD

☞ Comprehensive test of the Encapsulated Resistive-Anode with the grounded
mesh scheme of the Micromegas detector performed with a 5 GeV electron
beam, demonstrates excellent performance

➠ σrϕ at z = 0 ≃ 60µm and σrϕ ≤ 100µm
σz at z = 0 ≃ 200µm and σz ≤ 400µm

➠ field distortions near the edges, resulting from the ExB effect showed a
notable reduction compared to the standard scheme.

☞ The Encapsulated Resistive-Anode Micromegas detector meets
the performance requirements for the central tracker of ILD

➠ NIM paper summarizing comprehensive results from the beam test for
the Micromegas prototypes is imminient
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Backup

Backup
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TPC Principle

A Time Projection Chamber (TPC) is a
detector consisting of a cylindrical gas

chamber and a position sensitive readout
endcaps

☞ The TPC acts as a 3D camera
taking a snapshot of the passing
particle

☞ Transverse and Longitudinal resolutions
are major characteristics of the TPC

➠ XY position: charged particles ion-
ize the gas, a longitudinal electric field
causes ionization e− to drift towards
endcap where they are detected
(transverse resolution)

➠ Z position: measure time between ion-
ization and detection multiply by drift
velocity (longitudinal resolution)
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Micro Pattern Gas Detectors (MPGDs)

☞ Technology choise for TPC readout: Micro Pattern Gas Detector (MPGD)

➠ no ExB effect, better ageing, low ionback drift

➠ easy to manufacture, MPGD more robust mechanically than wires

☞ Resistive Micromegas (MM)

➠ MICROMEsh GAseous Structure

➠ metalic micromesh (pitch ∼50 µm)

➠ supported by 50 µm pillars

➠ multiplication between anode
and mesh (high gain)

☞ GEM

➠ Gas Electron Multiplier

➠ doublesided copper clad Kapton

➠ multiplication takes place in holes,

➠ 2-3 layers are needed to obtain
high gain

Discharge probability can be mastered (use of resistive coatings, several step amplification, segmentation)
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TPC Field Cage

☞ Overpressure 3 mbar

➠ pressure applied on the cage

➠ forces applied on each endplate with the
pressure on modules

☞ Requires a mandrel

➠ to shape the composite material
(Kapton with copper strips)

➠ to install flanges

☞ Field cage V2 of LP under development

➠ studies different wall structures ongoing

➔ glass fibers, glue, honeycomb

V2 TPC Large Prototype (LP)
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TPC Mechanical Precision/Alignment

☞ Required resolution

➠ electric field homogeneity: ∆E/E ≤ 10−4

➠ mapping of B field to 10−4

➠ high precision/stability of TPC field cage

☞ Large prototype (B=1 T):

➠ axis alignment ≤ 0.1mm

➠ cathode/anode ∥≤ 0.15mm

➠ max. bending ⊥ to Z (middle): ∼ 0.02mm

➠ less critical: length to 1mm and � to 0.7 mm

☞ ILD TPC (3.5x size/B field):

➠ axis alignment ≤ 0.3mm

➠ cathode/anode ∥≤ 0.45mm

☞ Precise alignment of readout structures

➠ all parts produced to a precision O(0.05 mm)

➠ stable aluminum backframe

➠ well established with Millepede II (test beam)
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TPC Interfaces

☞ Very High Voltage for
the central cathode:

➠ very big cable (insulation)

➠ curvature radii 70mm to 280mm

☞ Low-voltage power:

➠ bundles of 10 copper cables

➠ 6mm2 section (32 A)

➠ 6 sectors per end-plate:

➠ 120 cables, 12kW(100 W per cable)

➠ 20 m cables (R=0.06 Ω) →60 W loss
(60% of the useful power)

➔ cable cooling? DC-DC converters?

Detector HV and fibres for readout are
less demanding

Patch panels on each sector to allow
disconnecting the TPC

Possibly need a jacket against heat
from the ECAL
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Prototype Technologies (GEM)

Triple GEM Modules Double GEM Modules

☞ GEM: modified ALTRO readout

➠ 16-channel ALTRO chip (10-bit)
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Highly Pixelated Readout (TimePix)

Single chip (2017) QUAD (2018)

Module (2019) TPC Plane

☞ Micromegas on a pixelchip

➠ insulating pillars between grid & pixelchip

➠ one hole above each pixel

➠ amplification directly above the pixelchip

➠ very high single point resolution

☞ New QUAD design: Four-TimePix3

➠ tested in a beam in Bonn (2.5 GeV e−)

➠ improved chip protection against sparks
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Calibration and Drift Velocity

☞ Prototype operates with T2K gas

➠ Ar(95%), CF4(3%), iC4H10(2%)

➠ gas purity: 100 ppm H2O, 60 ppm O2

➠ deploy Magboltz calculations

Temperature [C◦] H2O [ppm] O2 [ppm]

☞ Absolute T0 calibration:

➠ beam trigger: dedicated z-scan at
Vdrift = 140, 230 V

➠ cosmic trigger: accumulate a whole
LP volume data events
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Vd Data 56.7 ± 0.1µm/ns 74.1± 0.2 µm/ns

Vd Magboltz 57.9± 1.0µm/ns 75.5± 1.0µm/ns
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√
cm 94.8± 3.1µm/

√
cm

s]µMean of Hit time [
0 2 4 6 8 10

Z
 o

f t
ab

le
 [m

m
] 

0

200

400

600  = 230 V/cmdriftE
sµ 0.1 mm/± = 75.8 driftv

 = 140 V/cmdriftE
sµ 0.1 mm/± = 57.8 driftv

Central module, B=1 T

s, 25.26 mm)µIntersection:(t0, z0)=(0.61 

40ns×T_adc, bin
0 50 100 150 200 250 300

E
ve

nt
s

0

2000

4000

6000

8000

10000

0
T m/nsµ=56.9 

drift
/T

tpc
=L

drift
V

LCTPC (MM TB2015)

=140V/cm
drift

E

S.Ganjour TPC with Micromegas-Based Readout 27



2-Phase CO2 Cooling

Cooling of the electronic circuit is required
due to power consumption

☞ Temperature of the circuit rises up to 60◦C

➠ causes a potential damage of electronics

➠ convects gas in TPC due to pad heating

☞ A 2-Phase CO2 cooling with the KEK cool-
ing plant TRACI was provided to 7 MM
modules during 2014/15 beam tests at DESY

☞ 2018 tested with 4 modules in one loop

➠ 10◦C at P=50 bar system operation

➠ about 30◦C on the FECs was achieved dur-
ing 11 days of continuous operation

2-phase CO2 cooling support

☞ Thermal behavior and effect of
cooling have been simulated

➠ D.S. Bhattacharya et al.,
JINST 10 P08001, 2015
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3D Cooling Circuit

☞ ILD TPC Requirements

➠ about 1kW heat transfer
(half cilinder)

➔ power pulsing at room T

➠ ∆T ≃ 1◦C over the gas volume

➔ uniform pad plane temperature

➠ less material comparing to existing
experiments

☞ The development of a micro-channel
cooling plate using 3D printing tech-
nology is currently in progress

➠ the primary dedicated test at DESY
was conducted in 2021
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Facility Upgrade: Large Prototype 2 (LP2)

☞ Further studies toward the technol-
ogy choice will be carried out with
upgraded LP2

➠ new mechanical design of endplate:
no space between modules

➠ new large area strip telescope within
solenoid with Si sensor:
(project LYCORIS )

➔ 10x10 cm2 active area

➔ 320 µm thickness

➔ 0.3%X0 material budget

➔ 25 µm strip pitch to meet momen-
tum resolution

➔ integrated pitch adapter and digi-
tal readout (KPiX)

System is under final review before
send off to production and funded by

EU AIDA2020
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Ion Backflow

Ion Space Charge can deteriorate
the position resolution of TPC

☞ Primary ions yield distortions
in the E-field which result to
O(≤ 1µm) track distortions

☞ Secondary ions yield distortions
from backflowing ions generated in
the gas-amplification region:

➠ 60 µm for IBFxGain=3
for the case of 2 ion disks

(ILC bunch structure)
ions drift slowly

vions ∼ 1m/s

Gate is needed!
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Ion Gating

Gating: open GEM to stop ions while
keeping transparency for electrons

☞ A large-aperture gate-GEM with
honeycomb-shaped holes

The ions must be stopped before
penetrating too much the drift region
The device to stop them must be

transparent to electrons
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GEM gating –Large aperture GEM transparency

Electron transmission rate as a function of
GEM voltage measured with Fe55

Extrapolation to 3.5 T shows acceptable
transmission for electrons (80%)

Simulation shows that ion stopping power
better than 10−4 at 10 V reversed biases

☞ The results are consistent with
no more degradation than ex-
pected ( 10%)

➠ M. Kobayashi, et al.,
NIM A (918), 41-53
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