

Coordina

Partne

Partner

Even Numbers of a Telephone Directory 1960

Random Distribution of 40,000 Squares using the Odd and

François Morellet

Partner

In-Silico generation of random bit streams

the value of unpredictability

	Organization	Organization	Massimo Organization	Cacci	a Contact person email
	full name . UNIV	short name /	l'Insubria	person name n	dom Power s.r.l.
ator	Università degli Studi dell'Insubria	UNINS/ 1999855334300 C	University O.CACCIA	Massimo r Parciao r	massimo.caccia@uninsubria.it MPOWEI.EU
er 2	AGH- University of Science and Technology	AGH/ 999844573	University	Wojciech ewicz	kucewicz@agh.edu.pl
er 3	Nuclear Instruments	NI/904737916	SME	Abba	abba@nuclearinstruments.eu
er 4	Quantum Financial	QFA/ (194273992S p H	SME rogram in ong Kong	Marcello Fapeicl Jan. 2	marcello.esposito@outlook.it e Physics 2024 4th

FALLING WALLS VENTURE

]

1. introduction: WHAT FOR?

"Differential privacy makes it possible for tech companies to collect and share aggregate information about user habits, while maintaining the privacy of individual users."

there is definitely a hype about Random bit streams, not only for crypto but also for gaming, virtual reality, Monte Carlo simulations, IoT, Satellite communication &control and notably Privacy Preservation Procedures

a 2020 paper by the U.S. Census Bureau:

Randomness Concerns When Deploying Differential Privacy

Simson L. Garfinkel US Census Bureau Suitland, MD simson.l.garfinkel@census.gov

Philip Leclerc US Census Bureau Suitland, MD philip.leclerc@census.gov

true data. Thus, while the data for the Decennial Census can be stored in a few tens of gigabytes, protecting its output statistics will require the DAS to use roughly 90TB of random data.

a 2023 article on FORBES:

Challenges Of Zero-Knowledge Proof Technology For Compliance

Alexander Ray Forbes Councils Member

Forbes Business Council COUNCIL POST | Membership (fee-based)

Problem 2: Vulnerability To Random Number Generator Attacks

2 o f

HOW TO GENERATE AN UNPREDICTABLE RANDOM NUMBER?

It is always nice to consider an artist's point of view:

"With Random Distribution, the purpose of my system was to cause a reaction between two colours of equal intensity. I drew horizontal and vertical lines to make 40,000 squares. Then my wife or my sons would read out the numbers from the phone book (except the first repetitive digits), and I would mark each square for an even number while leaving the odd ones blank. The crossed squares were painted blue and the blank ones red. For the 1963 Paris Biennale I made a 3-D version of it that was shown among the Groupe de Recherche d'Art Visuel installations (and re-created it again on different occasions). I wanted to create a dazzling fight between two colours that shared the same luminosity. This balance of colour intensity was hard to adjust because daylight enhances the blue and artificial light boosts the red. I wanted the visitors to have a disturbing experience when they walked into this room – to almost hurt their eyes with the pulsating, flickering balance of two colours. I like that kind of aggression."

excerpt from https://www.tate.org.uk/context-comment/articles/65-38-21-4-72

François Morellet (1926-2016) Random Distribution of 40,000 Squares using the Odd and Even Numbers of a Telephone Directory 1960 RINDOM MOMA, New York

2. the essence of random number generation: HOW TO GENERATE AN UNPREDICTABLE

HOW TO GENERATE AN URANDOM NUMBER?

PRNG

(PseudoRandom Number Generators) are essentially a piece of software code ⇒ they deterministic and in principle

predictable

$$x_n\equiv ax_{n-1}+b\ (mod\ m)$$

an example of linear congruential generator

J. Von Neumann: Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.

Von Neumann, John (1951). "Various techniques used in connection with random digits" (PDF). National Bureau of Standards Applied Mathematics Series. **12**: 36–38.

TRNG

(True Random Number Generators) are essentially coin flipping, namely get bits out observing unpredictable natural phenomena

http://glee.wikia.com/wiki/File:281735_1342370254-coin-flip.gif.gif

2. the essence of random number generation:

HOW TO GENERATE AN UNPREDICTABLE RANDOM NUMBER?

PRNG

(PseudoRandom Number Generators)

Fast, cheap & reasonably easy. However:

software Random Number Generation is PSEUDO
 code can be bugged
 and it may have a BACKDOOR

Attack Trends Editor: David Ahmad, drma@mac.cr

Two Years of Broken Crypto

Debian's Dress Rehearsal

2006

HOWE PAGE	TODAT S PAPER	VIDEO	WOST P	OFOLAR	U.S. Edition						Casada A			
Ehe New	York Eimes				U	.S.					Search A		s.com	Go
WORLD U	J.S. N.Y. / REGI	N BUS	SINESS	TECHNOI	LOGY SCIE	ICE HEALTH	SPORTS	OPINION	ARTS	STYLE	TRAVEL	JOBS	REAL ESTATE	AUTOS
POLITICS	EDUCATION	EXAS												
	Sec	ocumen	OCU Its show	ment v that the g	IS Reve N.S.A. has l lustry to wea	al N.S. een waging a ken encryptic	A. Car war agains	npaig t encryptio ls, making o	n Ag n using lesign c	a battery	of method	ypti ls that aphic	on	
	Sec	ocumen nclude soft	OCU nts shov working tware, a	ment v that the g with ind and pushir	N.S.A. has l lustry to wearing internation	al N.S.A een waging a ken encryptic nal encryptic	A. Car war agains n standard n standard	npaig t encryptio ls, making c s it knows i	n Ag n using t lesign c t can br	a battery hanges to eak. Rel	of method o cryptogra ated Article »	yptions that aphic	on 201	3

changes to commercial software to weaken encryption, and lobbying for encryption standards it can crack.

TRNG

(True Random Number Generators)

Extracting bits from the observation of natural phenomena is not trivial and you may suffer from

"coin bias" by the embodiment of a great principle

weakness against environmental parameters

- a significant "attack surface", conditioning the device in use
- low bit rate

2

Random Power principle: GO QUANTUM! t h e 3

HOW DO WE DO IT?

Inspired by Forrest Gump, we say:

RADIOACTIVE IS AS RADIOACTIVE DOES

emission by a radioactive source is due to the quantum laws of Nature

decays of unstable nuclei are unpredictable

the sequence of detected decays can be used to generate random bits with different recipes:

- Check the parity of the number of pulses in a time window
- pre-define the time window in a way that is equally like to have or not to have a single pulse

The idea behind handy, cost effective, simple, robust, providing sequences of pulses mimicking radioactive decays.

Sequence of pulses by the decay of a radioactive source in a nuclear physics detector

is to replace a radioactive source with something safer, more

> The generator, an array of Single Photon Avalanche Diodes, namely p-n junctions operated beyond the breakdown voltage:

A pioneering development by Prof. S. Cova at Politecnico di Milano

Cova, S., Ghioni, M., Lacaita, A. L., Samori, C., and Zappa, F. "Avalanche photodiodes and quenching circuits for single-photon detection", Applied Optics, 35(12), 1956–1976 (1996)

Simulation of an avalanche development

- Very shallow p-n junction $\rightarrow \sim 1 \, \mu m$
- High electric field
- Mean free path

→ > 3 x 10⁵ V/cm **→** ≈ 0.01 µm

Courtesy of Ivan Rech, Politecnico di Milano [50 µm cell size]

Multiplication by about 1 000 000

Photon induced charge carrier generation RNDOM POWER

The name of the game: charge carriers can be generated "spontaneously", also when no light is illuminating the sensor

A lesson from the past, when this was known since the early days of the Silicon technology development:

1. INTRODUCTION

MOST reverse biased p-n junctions in silicon have their avalanche breakdown caused by microplasma effects. Microplasmas are small regions within the junction,¹ where a local disturbance of the electrical field is believed to reduce the breakdown voltage to a value below the breakdown voltage of the surrounding uniform junction.²⁻⁵ As voltage is increased from low values microplasma breakdown is generally characterized by random "on-off" current fluctuations so long as currents remain below a critical value (40 to 120 μ A).⁶⁻⁸

from paper

PHYSICAL REVIEW

VOLUME 94, NUMBER 4

MAY 15, 1954

Avalanche Breakdown in Silicon

K. G. MCKAY Bell Telephone Laboratories, Murray Hill, New Jersey (Received December 23, 1953)

JOURNAL OF APPLIED PHYSICS

ROLAND H. HAITZ[†]

(Received 5 November 1963)

FIG. 5. Avalanche current as a function of time at low temperatures. The group character of the avalanche pulses is obvious.

The complex current fluctuations observed in connection with microplasma breakdown can be explained by a simple model containing two constants: extrapolated breakdown voltage V_b and series resistance R_s ; and two continuous probability functions: turnoff probability per unit time $p_{10}(I)$ as a function of pulse current I and turn-on probability per unit time p_{01} . Experimental methods allowing an accurate measurement of these four quantities are described. The new concept of an extrapolated breakdown voltage V_b is discussed based on two independent measurements: one of secondary multiplication and the other of instantaneous current, both as a function of voltage. Within the experimental accuracy of 20 mV both methods extrapolated to one and the same breakdown voltage. The turnoff probability $p_{10}(I)$ is determined by a new combination of experimental techniques to cover the current range from 5 to 70 μ A with a variation of 11 decades for $p_{10}(I)$. The observation of a narrow turnoff interval is explained quantitatively.

VOLUME 36, NUMBER 10 F APPLIED PHYSICS

Mechanisms Contributing to the Noise Pulse Rate of Avalanche Diodes^{*}

ROLAND H. HAITZ

Shockley Research Laboratory, Semiconductor Division of Clevite Corporation, \$ Palo Alto, California (Received 16 November 1964)

Model for the Electrical Behavior of a Microplasma*

VOLUME 35, NUMBER 5

Shockley Laboratory, Clevite Corporation Semiconductor Division, Palo Alto, California

2

The name of the game: charge carriers can be generated "spontaneously", also when no light is illuminating the sensor, by quantum tunnelling

Fig. 8. Representation of the different sources of primary dark events and their location in the SPAD structure.

after A. Gola, C. Piemonte, NIM A926 (2019) 2-15

Key issues:

* the Dark Count Rate is O(1 KHz)/cell, 50 µm pitch (it may be higher for SPAD arrays in CMOS technology)

- * provided the nature of the Dark Pulses, we have a significant dependence on Temperature
- * forget-me-not: the Over-voltage is affecting the triggering probability

Thermal generation of carriers by states in the bang-gap

(Shockley-Read-Hall statistics), where trapping and de-trapping is increased by the high electric field in the junction. The **Generation rate** can be written as:

$$\vec{\sigma} = \frac{n_i}{2 \cdot \cosh\left(\frac{E_0 - E_t}{kT}\right)} N_t \sigma v_{th} = \frac{n_i}{\tau_{g0}}$$

 $E_0 =$ Fermi level E_t = trapping level n_i = intrinsic carrier concentration N_t = trapping concentration σ = trapping cross section v_{th} = thermal velocity

the Random Power principle: 3.

This is the essence of

RIND0M

providing virtually endless streams of

shielded against any bias by the fundamentals of **Quantum Mechanics**

- Italian Patent granted in Sept. 2020
- EU patent granted in 2022
- first iteration in the US and Japan
- still in the examination phase in China & South Korea (since April 2021)

A genuine Q(quantum)-True Random Number Generator, namely a Quantum Coin Flipper

RANDOM BITS -> CRYPTOGRAPHIC KEYS

The essence of Random Power: turning unpredictable "Dark Pulses" into bits

1. tag & time stamp the occurrences of the random pulses

2. analyse the time series of the pulses:

 \rightarrow Easy to see that ANY systematics in "time stamping" (e.g. dead time, granularity and phase wrt a continuous clock) implies a possible systematics in the bit generation

*bit 1: Δt₁₂ vs Δt₃₄ *bit 2: Δt₂₃ vs Δt₄₅ *bit 3: Δt₅₆ vs Δt₇₈ *bit 4: Δt₆₇ VS Δt₈₉

do it?a how do we 4

Phase II:

submission Sept. 20th, 2021

notification of approval Jan. 31st, 2022

- Duration: May 2022 to August 2024
- ▶ funding: 2 MEUR
- selection & competitiveness:

1211 submissions in Phase 1 → 170 approved → 87 submissions for phase II (68 R&D proposals) → 18 R&D approved

combined success rate: 18/1211 = 1.5%, so we did well!

it?a collaborative effort 5. d o h o w d o w e

Our consortium:

leading party

Organization short nome

Organization $t_{\rm vn}$ ¹

Contact norgon

weeroc

Contact person email

Μ POVER

18 man-years dedicated to the project

4. state-of-play: THE SINGLE GENERATOR BOARD

3.5 cm

Main output of the

ATTRACT Phase I project (May 2019-Oct.2020)

Dimensions [cm ²]	8x3.5
No. generators	1 array
Raw bit stream:	100 kbps
NIST DRBG output	NA
(SP800-90 A,B,C)	
Control:	Xilinx Spartan 7
I/O:	USB or bits-on-pin
Power supply:	through the USB (5V, 0.5A)
Power consumption:	<2.5W
Encryption	No
of the bit stream:	
Specific Features:	 Firmware implemented Real-Time sanity checks (MONOBIT and RUNS) Auxiliary post-processing through a SHA256 function
State of development:	 Completed Full qualification of 2 Tb through the NIST and TESTU01 protocols Single board control through a GUI or
	mini-farm control implementing also the NIS DRBG procedure (SP800-90 A,B,C)

4. state-of-play: THE SINGLE GENERATOR BOARD

8 cm

Upon request, bits can be routed on pins

FTDI chip for data routing on the USB

FPGA embedding a proprietary TDC and implementing the bit extraction + real-time sanity checks (MONOBIT&RUNS) + conditioning function (SHA-256)

Amplification & discrimination

Single generator (either 1x1 mm2 or 3x3 mm2 - Bit rate for the smaller area device: O(100 kbps) - operated with overvoltage stabilisation against Temperature variations

									fina	lAnalysisRe	port_PART2.t>	ĸt
RES	ULTS	FOR	THE	UNI	FORM	LTY (DF P-	-VALI	JES A	AND THE PR	OPORTION OF	PASSING SEQUENCES
Tes	genei tFW8_	rato _4Bi	r is tNoRe	<td>sers, pe_10</td> <td>/luca GB_Pa</td> <td>a/Do art2</td> <td>cumen bin:</td> <td>nts/F ></td> <td>Random_Pow</td> <td>er/ProgramAn</td> <td>dTechnical/ATTRACT_Eu_Board_Fw8</td>	sers, pe_10	/luca GB_Pa	a/Do art2	cumen bin:	nts/F >	Random_Pow	er/ProgramAn	dTechnical/ATTRACT_Eu_Board_Fw8
C1	C2	С3	C4	C5	C6	С7	С8	С9	C10	P-VALUE	PROPORTION	STATISTICAL TEST
100 97	110 102	95 94	93 103	90	90 97	114 105	101 106	98 102	109 87	0.682823 0.941144	986/1000	Frequency BlockFrequency
95 94	95 112	101	100	113	106	93 89	100	89 123	108	0.842937	989/1000	CumulativeSums
100	93 01	91 96	112	93 121	112	99 85	110	101	89 116	0.647530	992/1000	Runs
100	104	89 103	110	97 85	88 94	126	84 100	99 106	103	0.148653	992/1000	Rank
104 111	98 98	91 112	89	104	90 95	110	100	115	95 98	0.632955	987/1000	NonOverlappingTemplate
111	100	93 110	94 101	101	109	93 93	87 103	117	95 101	0.514124	986/1000	NonOverlappingTemplate
93 84	112	93 101	101	91 86	89 110	94 111	99	115	111	0.498313	989/1000	NonOverlappingTemplate
114	92	98	96 101	105	105	101	100	83 105	106	0.682823	992/1000	NonOverlappingTemplate
90	93 109	97 98	107	99 116	89 104	100	116	105	101	0.689019	994/1000	NonOverlappingTemplate
88	93	103	101	112	104 94	111	99 07	100	99 93	0.829047	988/1000	NonOverlappingTemplate
90 108	97	97	103	84	94	101	97 101	93 91	120	0.388990	988/1000	NonOverlappingTemplate

series of tests on non-overlapping templates

80	98	115	100	98	115	107	91	83	113	0.106877	993/1000	OverlappingTemplate
86	116	121	101	91	87	96	101	87	114	0.084037	990/1000	Universal
97	90	107	116	110	95	103	93	92	97	0.668321	987/1000	ApproximateEntropy
70	62	54	60	55	66	60	63	77	65	0.668486	626/632	RandomExcursions
62	69	58	70	58	61	56	71	63	64	0.909311	626/632	RandomExcursions
60	53	59	62	76	72	60	59	66	65	0.681642	620/632	RandomExcursions
70	64	83	45	62	69	70	65	51	53	0.040275	622/632	RandomExcursions
66	69	69	73	73	73	38	49	52	70	0.009611	627/632	RandomExcursions
65	52	67	82	68	54	51	63	72	58	0.136536	627/632	RandomExcursions
61	55	60	72	66	71	67	56	55	69	0.711017	626/632	RandomExcursions
47	61	62	58	71	63	71	61	68	70	0.553450	625/632	RandomExcursions
60	57	66	62	58	61	67	67	73	61	0.941564	624/632	RandomExcursionsVariant
60	70	43	60	64	58	58	88	64	67	0.030676	622/632	RandomExcursionsVariant
66	58	51	65	51	61	72	72	71	65	0.447593	624/632	RandomExcursionsVariant
63	67	59	46	67	60	68	70	73	59	0.483876	623/632	RandomExcursionsVariant
61	67	58	69	63	74	48	60	66	66	0.615645	624/632	RandomExcursionsVariant
75	62	63	58	63	55	66	54	71	65	0.717488	624/632	RandomExcursionsVariant
68	63	66	54	57	65	63	67	56	73	0.827336	620/632	RandomExcursionsVariant
75	54	64	57	65	64	56	62	64	71	0.733547	623/632	RandomExcursionsVariant
76	68	70	56	55	50	66	52	64	75	0.176734	624/632	RandomExcursionsVariant
89	63	57	59	59	55	58	68	63	61	0.134074	624/632	RandomExcursionsVariant
67	68	61	57	60	69	66	63	63	58	0.979797	624/632	RandomExcursionsVariant
65	64	62	71	58	68	67	53	60	64	0.917568	626/632	RandomExcursionsVariant
71	58	56	62	75	62	67	64	53	64	0.701268	626/632	RandomExcursionsVariant
64	71	49	62	61	69	69	59	59	69	0.694743	626/632	RandomExcursionsVariant
61	65	54	59	63	63	64	76	62	65	0.879806	626/632	RandomExcursionsVariant
58	55	57	67	65	66	54	66	76	68	0.642077	629/632	RandomExcursionsVariant
46	64	65	61	64	61	81	59	75	56	0.150772	624/632	RandomExcursionsVariant
50	56	65	67	74	67	51	63	73	66	0.353061	629/632	RandomExcursionsVariant
106	107	87	107	94	109	100	83	92	115	0.352107	989/1000	Serial
105	100	94	98	96	95	96	101	95	120	0.790621	991/1000	Serial
105	97	89	101	96	106	92	112	105	97	0.875539	991/1000	LinearComplexity
												,
The	mini	imum	pass	s rat	te fo	or ea	ach s	stat	istic	al test wit	th the except	ion of the
random excursion (variant) test is approximately = 980 for a												
sam	ole	size	= 10	000	oina	rv se	eauer	ices				
	_											

The minimum pass rate for the random excursion (variant) test is approximately = 618 for a sample size = 632 binary sequences.

For further guidelines construct a probability table using the MAPLE program provided in the addendum section of the documentation.

bit string:

bits in a string

A proto-randomness farm based on 10 boards have been collecting about 1.5 Tb, qualified through the NIST and TESTU01 suites.

- Results show that the stream looks extremely "white", essentially with no failures on the raw data beside what can be statistically expected.
- A SHA256 vetted conditioning function firmware implemented
- Two tests have been implemented in firmware to guarantee realtime sanity checks:
- * MONOBIT: essentially testing the asymmetries between 0's and 1's in a
- * RUNS: testing the statistics of the number of sequences of identical

Goal of the

Phase 2 project (May 2022-Fall.2023)

Dimensions [cm ²]	11.1x31.2x2.0
No. generators	64 arrays
Raw bit stream:	32 Mbps
NIST DRBG output	1 Gbps
(SP800-90 A,B,C)	
Control:	Xilinx KRIA K26 SOM
I/O:	Eth or PCI-Express
Power supply:	12V, 8A
Power consumption:	< 100 W (dominated by the Peltier co
Encryption	Yes (AES-256)
of the bit stream:	
Specific Features:	 Firmware implemented Real-Time sanity checks (MONOBIT, RUNS, Adaptive proportion test, Repetition Count Test) Auxiliary post-processing through a SHA256 function Interface through the Trusted Execution Environment Temperature control though a Peltier cooler FIPS-140-3 compliant by design
State of development:	 Prototype under test Product grade design expected by June 2024

v1.0 delivered in July 2023, qualified
 v2.0, product grade, expected in May 2024

ATTRACT

Goal of the

Phase 2 project (May 2022-Fall.2023)

S13361-2050AE-08 by HAMAMATSU 8x8 sensors on each unit

Electrical and optical characteristics (Typ. Ta=25 °C, Vover=3 V, unless otherwise noted)

rmbol	Value	Unit	
λ	320 to 900	nm	
λр	450	nm	
PD5	40		
CD	300 900	kcps	
Ct	140	pF	
М	1.7×10^{6}	-	
Vbr	53 ± 5	V	
Vop	Vbr + 3	V	
	0.1	M	
-	0.3	V	
TVop	54	mV/°C	

Expected bit rate: 0.45 * 300 * 64 = 9 Mbps (I believe it can be pushed to 32 Mbps)

СЗ 2

S13361-2050AE-08 by HAMAMATSU

8x8 sensors on each unit

the LIROC ASIC

Same Alk Corner	
B 0820(mag)(F., 53/PLUS*()) ● 453 - 107/54145(m*27.0) ● non 663 = 107/54145(m*1250) ● 171-17-45 = 1087/5444(m*145.0) ● 1.1-17-17 453 353 <u>9</u> 255	In: Counter - 00, NER-6-F 19, 391 (24) Type of Counter - 201 (3:3-6- of 12423-02) WC Conner - 01, 7308-6; V2, 661 (48) WC Conner - 01, 7308-6; V2, 661 (48)
Power	210mW (TBC) – Supply voltage : 1.2 V
Consumption •	
Inputs	64 analogue inputs with independent SiPM HV
	adjustments
Outputs 👔	64 LVDS triggers
5 -22 F -30	
Internal	64 HV adjustment for SiPM (64 x 6 bit), trigger
Programmable	threshold programming (10bits), 64 x 7 bit
Features (I2C)	channel-wise threshold adjustment, ASIC-wise
	polarity selector, preamp gain adjustment,
	individual trigger masking and cell powering.

CB Ы

S13361-2050AE-08 by HAMAMATSU 8x8 sensors on each unit

the LIROC ASIC

XILINX

Zynq UltraScale+ MPSoC (XCK26)

- APU: Arm[®] Cortex[®]-A53 based application processing unit (APU) consisting of quad-core Cortex-A53 processors with an F_{MAX} = 1333 MHz, L2 cache, SIMD, VFP4 floating point, and cryptography extensions.
- RPU: Arm Cortex-R5F based real-time processing unit (RPU) consisting of dual-core Cortex-R5F processor with floating point unit support with an F_{MAX} = 533 MHz, able to operate in stand-alone and lock-step functions.

12W power consumption

THE CUSTOM ASIC

8 mm

Dimensions [cm ²]	1x1
No. generators	1 array
Raw bit stream:	1 Mbps
NIST DRBG output	32 Mbps
(SP800-90 A,B,C)	
Control:	SPI at 24 MHz (system clock: 66
I/O:	SPI at 24 MHz
Power supply:	5V, 1.8V
Power consumption:	100 mW
Encryption	Yes (AES-256)
of the bit stream:	
Specific Features:	 On Silicon implementation of the NIST Real-Time sanity checks (Adaptive Proportion Test and Repetition Count Test) On Silicon implementation of the NIST DRBG protocol Package: QFN100 FIPS 140-3 compliancy by design; CAVP (Cryptographic Algorithm Validation Program) in progress
State of development:	 Design Completed Production on going Delivery expected by April 2024

out of the foundry in April 2024

THE CUSTOM ASIC: a focus on elements of interest for the PP community

Goal of the

The SPAD array:

- ***** 32 x 32 cells, **indexed** (!), 50 µm pitch
- ***** 400 µm² SPAD area **[O(45%) FF in Tower's structure with no DTI**]
- ***** active quenching
- * 2bits/cell to tag whether "screamers" and "disabled"
- * expected Vbreakdown: O(12.5V)
- \Rightarrow expected DCR density @roomT: 20 Hz/µm² (all in all 8.2 Mcps in the array;
- mind the screamers!); note that other processes have a DCR lower by a factor 15
- \Rightarrow Deep trench isolation for X-talk reduction (O(1%) at +4V)

***** FBK-IP: circuit for

- \Rightarrow auto-V_{Br} detection
- High-V generation through a charge pump
- auto excess voltage stabilisation against T & process variations

PONFL

4. state-of-play: THE CUSTOM ASIC: a focus on elements of interest for the PP

experimental results by test structures in one of the Tower processes

Goal of the

TTRACT Phase 2 project (May 2022-Fall.2023)

The SPAD array:

THE CUSTOM ASIC: a focus on elements of interest for the PP community

- width of the pulse $PW_{MS} < \tau_d$ (nx100 ps
- quoted in the ref. paper. 3 ns in pur implementation vs τ_d about 30 ns)

* "Digital Silicon Photomultipliers with OR/XOR Pulse Combining Techniques', IEEE Transactions on Electron Devices, vol. 63, no. 3, pp. 1105-1110. https:// doi.org/10.1109/TED.2016.2518301, by S. Gnecchi et al., 2016

Data "draining": pulse combination through an on-cell monostable driven OR tree:

- OR tree fed by pulses from a monostable circuit

circuitry: FBK-IP (partially patented)

THE CUSTOM ASIC: a focus on elements of interest for the PP community *** TDC-A** [FBK IP]; the ping-pong architecture:

- A Fully Digital 8 16 SiPM Array for PET Applications With Per-Pixel TDCs and Real-Time Energy Output, L. Braga et al. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 1, JANUARY 2014

- A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 m CMOS, D. Tyndall et al. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. 6, NO. 6, DECEMBER 2012

	2	3	4
+	+		—

- 5. stops counter 2 down and re-start counter 1 up cascade of 4 counters
- the sign of each counter (15+1 bits) determines the status of one random bit
- dead time of each up-down counting 20 ns

THE CUSTOM ASIC: a focus on elements of interest for the Pimasenic community

TDC-B [IMASENIC IP]: a fourfold cascade of high-res resettable counters

Time stamping by the time of the arrival to the next leading edge of the coarse clock

- **Optimisation**:
- frequency

Gated Ring Oscillators with 248 ps cycle

- efficiency, taking into account advantages & disadvantages linked to the coarse clock

- systematics, comparing "time of arrivals" originating by the same GRO

THE CUSTOM ASIC: beside potential interest for the PP community

DCR level control (joint property of Random Power and FBK)

through bias variation and cell enabling/disabling

***** AES-256 encryption of the bit stream (NAGRA-KUDELSKI IP) Chip access control via a silicon encoded key (NAGRA-**KUDELSKI IP**)

THE CUSTOM ASIC: beside potential interest for the PP community

Entropy consumer

A Deterministic Random Bit Generator (DRBG), as of the NIST recipe

***** Essentially, the True Random Bits generated by Random Power are used to seed a NIST approved Pseudo Random **Bit Generator**

* when reseeding occurs after EVERY iteration of the Deterministic machine, you obtain the highest level of security, namely **Prediction Resistance***

* QUOTING NIST: Prediction resistance means that a compromise of the DRBG internal state has no effect on the security of future DRBG outputs.

4. state-of-play: BEYOND A PURE TRUE RANDOM NUMBER GENERATOR (TRNG)

NIST Special Publication 800-90B

Recommendation for the Entropy
Sources Used for Random Bit
Generation

Recommendation for Random Number Generation Using Deterministic Random Bit Generators

How to design and test entropy sources to be **Approved DRBG mechanisms** used to feed Deterministc Random Bit **Generators (DRBG)**

* pre-requisites for entering the programs eventually leading to the FIPS-140-3 certification * impacting on the design of both the ASIC, the multiple generator board and its embodiment in a "system"

NIST Special Publication 800-90A Revision 1

(Second Draft) NIST Special Publication 800-90C

Recommendation for Random Bit Generator (RBG) Constructions

Construction of RBG from A+B

RND0M

www.randompower.eu

Established in June 2021

This project has received funding from the ATTRACT project funded by the EC under Grant Agreement 777222

Join us, we will be happy to walk with you!

2020 Winner - ICT

2020 Winner of 2 "special prizes"

GIVING IDEAS THE

HIGHEST VALUE

2021 PoC investment by LifTT, a VC located in Torino (ITALY)

2022 winner @the Falling Walls venture competition for curious people: here & and there

I AM A FALLING WALLS WINNER

CONTACT US at:

<u>massimo.caccia@randompower.eu</u>

marcello.esposito@randompower.eu

\$ lorenza.paolucci@randompower.eu

