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Axion is a strong case of Physics Beyond the SM
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Strong QCD Problem: the 0 term in QCD

® QCD Lagrangian: here —m < O<nr
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® This @ term violates T and P, thus CP.

® Most sensitive probe of T and P violation in flavor-conserving process:
EDM of neutron

d (@) =24%x10"1°0 ecm
® Experiment: current best limit:
|d,| = (0.0% 1.1y, £0.2,,) x 107° ecm [Abel etal 2020]
® It implies
0] < 10710
Strong CP problem: why 0 is so small.



A Dynamical solution: axion field

® Dynamical solution of strong CP problem based on observation that the vacuum energy

in QCD has minimum at @ = 0
&o

\/m,l% +m?2 + 2mymg cos @
1
M, + My

€0(0) ~ X3 (my +myg) (

N _ \ [Di Vecchia,Veneziano "80;
2 = <uu> o <dd/ Leutwyler,Smilga 92]

—or -7 |lo 7 on

® If O is a dynamical field, 8(x) = a(x)/f,. Its VEV would be zero (to solve the strong CP)

® The particle excitation is called the axion.
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QCD axion, this mass relation does not hold.




Axion Dark Matter

1.165
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DM prediction: Q h?* ~ f—a 67 ~ (.12 -
¢ ’ 9% 1011 GeV l

e For £, > 10° GeV, axion DM can be substantial and even 100%.

® A lot of experiments searching for axion DM:



Axion Dark Matter

Experimental hunt

* Strong motivation for current und upcoming axion DM experiments:
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ALP couples to photon pairs and fermions
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Helioscope coverage
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Axion Like Particle Search at Higgs Factories

K.C, Ouseph 2303.1651, PRD



ete= Collider \/5 (GeV) Integrated Luminosity (fb_l)

ILC 250 2000
CEPC 240 5600
FCC-ee 250 5000

TABLE I: A few proposals of eTe™ colliders running as a Higgs factory, at which the

center-of-mass energy and integrated luminosity are shown.
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We consider 3 channels:

e et > e eta; a— yy
e"et > ppta; a—yy
e et > vba, a = yy



Production Feynman Diagrams




TABLE II: The ALP coupling strengths go~-, Gaz~, Gazz. and geww with
CWW — 2, CBB — 1, fa, = 103 GeV U.SiIlg Eqs. (4) — (7)

ALP couplings Numerical Value (GeV™1)
Jarrn 4.88 x 1077
oz 1.38 x 1072
Gaz? 7.11 x 1072

JaWw 8 x 1073
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FIG. 8: Branching ratios of the ALP with Cyww =2, Cgg =1, and f, = 1 TeV.
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FIG. 8: Decay length of ALP with g4, = 4.88 x 1077 GeV™! (Cyyw =2, Cp =1, and
fo =1 TeV).
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Estimating the Sensitivities

The number of signal events Ny at eTe™ colliders with /s = 250 GeV is estimated as

_ N > 50 GeV
Ny =o(ete” — ffa)x Bla— ~vv) X (pTWN - )><£,

]\/v<pT,W > 5() GGV)
NpM =o(efe” = ff y7) x e X L

2

ool GRS )

We use L =2ab~ !, Z > 2 to estimate the 95% sensitivities.
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eTe” > uTuTa, a—yy

1054 .
f{e*e‘ﬁ u*u'YV} \ ~ 30
' 5
- 0
Z e S e T O
10 - X
\ lf\1‘54x10"‘-
| = ALP-y-y O
1 — ALP-Z-Z
| — AP-Z-y
: —== SM __f\ -
10" 100 10} 102 1071 100 10* 107
M, (GeV) M, (GeV)

Number of events after cuts 95% C.L. sensitivity on g,



eTe” = vba, a —> yy
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Atmospheric axion-like particles at Super-Kamiokande

K.C., Jui-Lin Kuo, Po-Yan Tseng, Zeren Simon Wang 2208.05111 (PRD)



Motivation

Large numbers of mesons including charged pions are produced in the
atmospheric air showers resulting from cosmic rays. Once ALPs are
produced from these charged-pion decays, if long-lived, they can travel
tens of kilometers downwards to the Earths surface thanks to the large
Lorentz boost, and decay in large-volume neutrino experiments such as

Super-Kamiokande (SK), leading to Cherenkov signal events.



ALP-MUON INTERACTIONS

® Only ALP-muon interaction is considered:

LD —igauuafiysit,
@ For ALP mass larger than 2m, , ALP decays mostly into 2 muons. But for

lighter than 2m , , it decays into a pair of photons. The loop-induced ALP-photon
coupling is

1 ft N
»Cloop D _chewvaF,u F,LLV?

e The effective coupling is (valid for m_ < ZmM ), and the lifetime is
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With the ALP-muon inferaction the ALP can be produced in the
charged pion decay

n~ — prva, with 0 <m, <m —m,

Followed by a — yy




ALP Flux from air shower

® We used the MCEq (Fedynitch et al., 1503.00544) to numerically solve the
cascade equations of particles propagating in a dense medium.
® The ALP is produced throughout the propagation of the secondary cosmic rays.

+ +
- — uva

e To implement the process 7~ — p~va into MCEq, we compute the decay matrix

.. CdN, /.
DI = AT, (T T{l)
T-—da 7T dTa T

where T . and T, are k.e. of pion and ALP, AT . is the bin width, j,i are bin labels

® The ALP energy spectrum dN /dE  in lab frame is obtained by a Lorentz boost to that

in the pion rest frame:
dN, B "dﬂ dN, | OE’"
dE, | 4z dE¥* | oT

d A




e Production rate of 7~ — u~va scales on the coupling-square &%W-

® Two cases for the decay of a — yy:
(1) the decay is determined by the decay length ¢z, in the ALP rest frame,
independent of gglm. The results can be easily reinterpreted for other theoretical

scenarios where the atmospheric charged pions decay to an LLP which
then subsequently decays visibly in the SK detector.

(2) Both decay and production depend on gﬁW.



ALP Detection on the Earth

® After arriving at the Earth, the ALP decays into yy, which are detected by

the Cherenkov detector in neutrino experiments.

® The event distribution is

dzNevent dz(bd
= € AtA (T, cos )
dT dcos @ dT dcos 0

where 0 is the Zenith angle, A ¢ is the effective detector area, € is the efficiency,
d*®

a

dT dcos6

is the output from MCEq.

0

® The main SM background comes from 7° — yy and neutrino-induced electron-like

events that create multiple Cherenkov rings in the electromagnetic showers.



® Another possible signal of the ALP is via the inverse-Primakoff process. The

ALP interacts with atoms to create a mono-y signal with an energy similar to

that of the ALP.
Y

A

® The cross section of the inverse-Primakoff is

8a
Opp = “ X2 GeV~*
1 GeV-1

e However, A i for detecting ALP decay is orders of magnitude larger than the effective

cross section of inverse-Primakoff N;op with N, the total number of atoms inside

the fiducial volume of the detector.



Super-Kamiokande

® Only charged pion with energies below the critical energy ¢.... = 115 GeV,
can they decay well before reaching the Earth surface. So ALP flux with

I > €. is suppressed.

® Water-based Cherenkov detector of SK has good resolution at sub- and
multi-GeV ranges.

® The geometry of SK: Rqx = 20 m, Hqr = 40 m. The lifetime is taken to be
5326 days and efficiency € = 0.735.

® Since the ALP decay signal consists of two e-like Cherenkov rings, we consider

the data of 7'-like two-ring events in sub-GeV 1, and e-like multi-ring events

for multi-GeV 1 range.
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e Constraint on (m,,,g,,,). taking
2
ct ~ 1/84,-
® Production 75 — u~va scales as
2
Eapp
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8aun ~ [10719, 2% 1077]

for m, < 10 MeV

® Future prospect at Hyper-K:
judicial volume increased by
25 times.



Summary

e Higgs factories can improve the sensitivity to g, ~ 2 X 107* GeV~! for
0.1MeV <m, < O(10) MeV.

® Search for the ALP at Super-K via Tt — //tiua, a — Yy can cover a

region of g, , that is not covered before by SN1987A and BaBar.



