Light Scalars at Future Collider

Huayang Song

Based on JHEP 08 (2023) 001 with F. Kling, S. Li, S. Su, W. Su

IAS Program on High Energy Physics (HEP 2024)

Jan 22, 2024

Search for New Physics

Status:

- No new particles are directly found with mass up to $\sim 1 \text{ TeV}$ and $\mathcal{O}(1)$ couplings
- Experiment anomalies and theoretical challenges need new physics

Light Scalars @ LHC

Many Beyond Standard Models including extended Higgs sector permit the light and weakly coupled scalars, such as Dark Higgs (SM+Singlet), 2HDM, 2HDM+(P)S, NMSSM,

Simplest prototype model: Dark Higgs

$$\mathcal{L} = -m_{\phi}^2 \phi^2 - \sin \theta \, \frac{m_f}{v} \, \phi \bar{f} f - \lambda v h \phi \phi + \dots$$

Light Scalar Singlet Extension of the SM

dim-5 operators							
Class	Type	Real	Complex	F	\mathbf{A}	\mathbf{M}	\mathbf{Z}_2
	$B_L^2 s$	$sB_{L\mu u}B_{L}{}^{\mu u}$			\checkmark		
$F_L^2 \phi$	$W_L^2 s$	$s W_L{}^I{}_{\mu u} W_L{}^{I}{}^{\mu u}$			\checkmark		
	$G_L^2 s$	$sG_L{}^A{}_{\mu u}G_L{}^{A\mu u}$			×		
	$e_c H^\dagger Ls$	$s{H^\dagger}^i(e_{cp}L_{ri})$			\checkmark		
$\psi^2 \phi^2$	$d_c H^\dagger Q s$	$s{H^\dagger}^i ({d_c}_p{}^a Q_r{}_{ai})$			\checkmark		
	HQu_cs	$\epsilon^{ij} s H_j(Q_{p_{ai}} u_{cr}{}^a)$			\checkmark		
	s^5	s^5					
ϕ^5	$HH^{\dagger}s^{3}$	$s^3 H_i {H^\dagger}^i$					
	$H^2 H^{\dagger 2} s$	$sH_iH_jH^{\dagger i}H^{\dagger j}$					
		<i>dim</i> -6 ope	erators				
Class	Type	Real	Complex	F	Α	\mathbf{M}	\mathbf{Z}_2
	$B_L^2 s s^\dagger$	$s^2 B_{L\mu u} B_L^{\mu u}$	$ss^{\dagger}B_{L\mu u}B_{L}{}^{\mu u}$				\checkmark
$F_L^2 \phi^2$	$W_L^2 s s^\dagger$	$s^2 W_L{}^I{}_{\mu u} W_L{}^I{}^{\mu u}$	$ss^{\dagger}W_L{}^I{}_{\mu u}W_L{}^{I}{}^{\mu u}$				\checkmark
	$G_L^2 s s^\dagger$	$s^2 G_L{}^A{}_{\mu u} G_L{}^{A\mu u}$	$ss^{\dagger}G_{L}{}^{A}{}_{\mu u}G_{L}{}^{A\mu u}$				\checkmark
	$De_{c}e_{c}^{\dagger}ss^{\dagger}$		$s(D^\mu s^\dagger)(e_{cp}\sigma_\mu e^\dagger_{cr})$				\checkmark

3

2306.05999 (HS, Sun, Yu)

Light Scalar Singlet Extension of the SM

				dim-	5 operators					
Class	Type Real			Complex	F	Α	м	\mathbf{Z}_2		
	$B_L^2 s$		$sB_{L\mu u}B_{L}{}^{\mu u}$					\checkmark		
E ² 4	W/2 c		$_{\rm eW}$ I $_{\rm W}$ I $^{\mu\nu}$					X		
	Singlet		dim-4	dim-5	dim-6	dim-7	dim-8			
Scalar	Real	w/o $\mathbf{Z_2}$	-	$9 + 6n_{f}^{2}$	$10 + n_f + 7n_f^2$	$\begin{array}{r} 30 + n_f + \frac{965}{12}n_f^2 \\ + \frac{3}{2}n_f^3 + \frac{397}{12}n_f^4 \end{array}$	$rac{1}{12}(516+36n)$ +42 n_f^3 +	$f_f + 124 \\ 661 n_f^4)$	$1n_f^2$	_ _
		w/ $\mathbf{Z_2}$	-	-	$10 + 6n_{f}^{2}$	$n_f + n_f^2$	$rac{1}{12}(516+ + 18n_f^3+$	$1085n_{f}^{2}$ $397n_{f}^{4})$		_ _
	Complex		-	-	$12 + 11 n_f^2$	$n_f + n_f^2$	$58 + rac{17}{1} + rac{3}{2}n_f^3 +$	$rac{397}{12}n_f^2 onumber \ rac{397}{12}n_f^4$		=
Class	Туре	1	Real Complex		Complex	\mathbf{F}	Α	Μ	\mathbf{z}_{2}	
	$B_L^2 s s^\dagger$		$s^2 B_{L\mu u} B_L^{\mu u}$		$ss^{\dagger}B_{L\mu u}B_{L}{}^{\mu u}$					\checkmark
$F_L^2 \phi^2$	$W_L^2 s s^\dagger$		$s^2 W_L{}^I{}_{\mu u} W_L{}^I{}^{\mu u}$		$ss^{\dagger}W_{L}{}^{I}{}_{\mu u}W_{L}{}^{I}{}^{\mu u}$					\checkmark
	$G_L^2 s s^\dagger$		$s^2 G_L{}^A{}_{\mu u} G_L{}^{A\mu u}$			$ss^{\dagger}G_{L}{}^{A}{}_{\mu u}G_{L}{}^{A\mu u}$				\checkmark
	$De_{c}e_{c}^{\dagger}s$	s^{\dagger}			$s(D^{\mu}s^{\dagger})(e_{cp}\sigma_{\mu}e_{cr}^{\dagger})$			\checkmark		

4

2306.05999 (HS, Sun, Yu)

ITP

Light Scalars

Model-independent framework with the most general interactions for CP-even and CP-odd scalar under EFT/coupling modifier.

developed general formalism for scalar production and decay
CP-odd A mix with light meson states
developed a program to calculate scalar decay, can be used for other new physics models
more complicated comparing to the simplest scenario
case study of 2HDM.

Numbers of Mesons Produced at (Future) collider

b-hadrons	Belle II	LHCb (300 fb^{-1})	Tera- Z
$B^0,ar{B}^0$	$5.4 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$	1.2×10^{11}
B^{\pm}	$5.7 imes 10^{10}~(50~{ m ab}^{-1}~{ m on}~\Upsilon(4S))$	$3 imes 10^{13}$	$1.2 imes 10^{11}$
$B^0_s,ar{B}^0_s$	$6.0 imes 10^8~(5~{ m ab}^{-1}~{ m on}~\Upsilon(5S))$	1×10^{13}	$3.1 imes 10^{10}$
B_c^{\pm}	-	1×10^{11}	$1.8 imes 10^8$
$\Lambda_b^0,ar{\Lambda}_b^0$	-	$2 imes 10^{13}$	$2.5 imes 10^{10}$

Wang et al. 2208.08327

Forward Region at ATLAS (FASER) for LHC Run 3 (150 fb⁻¹)

 $N_{\pi^0} \approx 2.3 \times 10^{17}, N_{\eta} \approx 2.5 \times 10^{16}, N_D \approx 1.1 \times 10^{15}, \text{ and } N_B \approx 7.1 \times 10^{13}$

For HL-LHC (a ab^{-1}), 20-fold increase can be expected.

At FCC-hh, the amount of produced B mesons at FCC-hh will be at least 30 times larger, assuming 20 ab⁻¹ total integrated luminosity.

Light cP-even Scalar

Effective Lagrangian

$$\mathcal{L} = -\frac{1}{2}m_{\phi}^{2}\phi^{2} - \sum_{f} \xi_{\phi}^{f} \frac{m_{f}}{v} \phi \bar{f}f + \xi_{\phi}^{W} \frac{2m_{W}^{2}}{v} \phi W^{\mu +} W_{\mu}^{-} + \xi_{\phi}^{Z} \frac{m_{Z}^{2}}{v} \phi Z^{\mu} Z_{\mu} + \xi_{\phi}^{W} \frac{q^{2}}{4} \phi \phi W^{\mu +} W_{\mu}^{-} + \xi_{\phi\phi}^{Z} \frac{q^{2}}{8\cos^{2}\theta_{W}} \phi \phi Z^{\mu} Z_{\mu} + \xi_{\phi}^{g} \frac{\alpha_{s}}{12\pi v} \phi G_{\mu\nu}^{a} G^{a\mu\nu} + \xi_{\phi}^{\gamma} \frac{\alpha_{ew}}{4\pi v} \phi F_{\mu\nu} F^{\mu\nu} + \xi_{\phi}^{W} \frac{q^{2}}{4\pi v} \phi F_{\mu\nu} F^{\mu\nu} + \xi_{\phi}^{W} \frac{q^{2}}{4\pi v} \phi G_{\mu\nu}^{a} G^{a\mu\nu} + \xi_{\phi}^{W} \frac{q^{2}}{4\pi v} \phi F_{\mu\nu} F^{\mu\nu} + \xi_{\mu\nu} \frac{q^{2}}{4\pi v} \phi F_{\mu\nu} F^{\mu\nu} + \xi_{\mu\nu} \frac{q^{2}}{4\pi v} \phi F_{\mu\nu} \frac{q^{2}}{4\pi v} \phi F_{\mu\nu} F^{\mu\nu} + \xi_{\mu\nu} \frac{q^{2}}{4\pi v} \phi F_{\mu\nu} F^{\mu\nu} + \xi_{\mu\nu} \frac{q^{2}}{4\pi v} \phi F_{\mu\nu} \frac{$$

Production • at Hadron Collider •

- decay of mesons, hadrons, radiative bottomonium
 Bremsstrahlung: small for high beam energies
 - photon/gluon fusion: smaller, small in forward region
 - h/Z/W decay: small in forward region

$$\mathcal{L}_{eff} = rac{\phi}{v} \sum_{\phi} \xi_{\phi}^{ij} m_{f_j} \bar{f}_i P_R f_j + h.c. \qquad \mathcal{L} \supset \xi_{\phi\phi}^{ij} \frac{\phi^2}{v^2} m_j \bar{f}_i P_R f_j + h.c.$$

effective coupling for flavor changing quark interactions

ΙΤΡ

$oldsymbol{\phi}$ Production

 $B \to X_s \phi \quad \xi_{\phi}^{bs}$ Heavy B meson decay ξ_{ϕ}^W $X \to \phi e \nu$ • Semileptonic decay of mesons ξ_{ϕ}^{ds} ξ_{ϕ}^{W} \overline{u} **Kaon decay** $K \rightarrow \pi \phi$ $\eta^{(\prime)} o \pi \phi$ • $\eta^{(\prime)}$ decay ξ^b_{ϕ} **Radiative bottomonium decay** $\Upsilon o \gamma \phi$ **Double scalar procution** $B \to X_s \phi \phi \quad K \to \pi \phi \phi \quad \xi^{ij}_{\phi d}$

ϕ Decay

Decay into a pair of photons, leptons, pair of quarks (gluons)/multiple hadrons

- Decay into diphoton
- Decay into dilepton

$$egin{aligned} &\Gamma_{\gamma\gamma} = rac{G_F lpha_{ ext{ew}}^2 m_\phi^3}{32\sqrt{2}\pi^3} \Big| \xi_\phi^\gamma \Big|^2, \ &\Gamma_{\ell^+\ell^-} = rac{G_F m_\phi m_\ell^2 eta_\ell^3}{4\sqrt{2}\pi} |\xi_\phi^\ell|^2. \end{aligned}$$

 $m_{oldsymbol{\phi}} \,>\, 2$ GeV: perturbative spectator model

- Decay into diquark $\Gamma_{\ell^+\ell^-}:\Gamma_{s\bar{s}}:\Gamma_{c\bar{c}}:\Gamma_{b\bar{b}} = |\xi_{\phi}^{\ell}|^2 m_{\ell}^2 \beta_{\ell}^3: 3|\xi_{\phi}^s|^2 m_s^2 \beta_K^3: 3|\xi_{\phi}^c|^2 m_c^2 \beta_D^3: 3|\xi_{\phi}^b|^2 m_b^2 \beta_B^3$
- Decay into digluon

$$\Gamma_{gg} = \frac{G_F \alpha_s^2 m_\phi^3}{36\sqrt{2}\pi^3} |\xi_\phi^g|^2$$

 $m_{\phi} < 2$ GeV: dispersive analyses

- Hadronic decay into pions and kaons $\Gamma_{\!\pi} \quad \Delta_{\!\pi} \quad \Theta_{\pi} \quad \xi^u_\phi \quad \xi^d_\phi \quad \xi^s_\phi \quad \xi^d_\phi$
- Further hadronic decays $\phi \to 4\pi, \eta\eta, KK\pi\pi, \rho\rho \dots$

$$\Gamma_{4\pi,\eta\eta,\rho\rho,\dots} = C \left| \xi_{\phi}^{g} \right|^2 m_{\phi}^3 \beta_{2\pi}$$

Light cP-odd Scalar

Effective
$$\mathcal{L}_{A} = -\frac{1}{2}m_{A}^{2}A^{2} + \sum_{f=u,d,e} \xi_{A}^{f} \frac{im_{f}}{v} \bar{f}\gamma_{5}fA + \xi_{AA}^{W} \frac{g^{2}}{4}AAW^{\mu+}W_{\mu}^{-} + \xi_{AA}^{Z} \frac{g^{2}}{8\cos^{2}\theta_{W}}AAZ^{\mu}Z_{\mu}$$

Lagrangian $+\xi_{A}^{g} \frac{\alpha_{s}}{4\pi v} AG_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} + \xi_{A}^{\gamma} \frac{\alpha_{ew}}{4\pi v} AF_{\mu\nu} \tilde{F}^{\mu\nu}$
loop generated coupling modifiers

Mixing

$$A \approx O_{A\pi^0}\pi^0 + O_{A\eta}\eta + O_{A\eta'}\eta' + O_{AA}A_{\rm CP-odd}$$

typically small except in the resonant region $m_A{\sim}m_i$

Production

• Production via meson mixing $\sigma_A \approx |C|$

$$\sigma_A \approx |O_{A\pi^0}|^2 \sigma_{\pi^0} + |O_{A\eta}|^2 \sigma_{\eta} + |O_{A\eta'}|^2 \sigma_{\eta'}$$

• B meson and Kaon decay

- $K \to \pi A \quad B \to X_s A \qquad \xi_A^{ij}$
- Bottomonium decay $\Upsilon o \gamma A \quad J/\psi o \gamma A \quad \xi^f_A$
- Double pseudoscalar production $B \to X_s A A \quad K \to \pi A A \quad \xi_{AA}^{ij}$

ΙΤΡ

A Decay

Decay into a pair of photons, leptons, pair of quarks (gluons)/multiple hadrons

• Decay into diphoton

$$\Gamma(A o \gamma \gamma) = rac{lpha_{
m ew}^2 m_A^3}{64\pi^3} igg| O_{AA} C_A^\gamma + O_{A\pi^0} C_{\pi^0}^\gamma + O_{A\eta} C_\eta^\gamma + O_{A\eta'} C_{\eta'}^\gamma igg|$$

• Decay into dilepton

$$\Gamma(A \to \ell^+ \ell^-) = \frac{G_F m_A m_\ell^2 \beta_\ell}{4\sqrt{2}\pi} |\xi_A^\ell|^2$$

- $m_A > 3$ GeV: perturbative spectator model
- Decay into diquark

$$\Gamma_{\bar{\ell}\ell}:\Gamma_{\bar{s}s}:\Gamma_{\bar{c}c}:\Gamma_{\bar{b}b}=(\xi_A^{\ell})^2 m_{\ell}^2 \beta_{\ell}:3(\xi_A^s)^2 m_s^2 \beta_s:3(\xi_A^c)^2 m_c^2 \beta_c:3(\xi_A^b)^2 m_b^2 \beta_b$$

• Decay into digluon

$$\Gamma(A \to gg) = \frac{G_F \alpha_s^2 m_A^3}{4\sqrt{2}\pi^3} |\xi_A^g|^2$$

1.3 GeV $< m_A < 3$ GeV: spectator model with partonic dynamic and hadronic kinematics

Hadronic decay

$$\mathcal{L}_{ ext{spect.}} = rac{i}{\sqrt{2}} A_1 (\mathcal{Y}_u^A ar{u} \gamma_5 u + \mathcal{Y}_d^A ar{d} \gamma_5 d + \mathcal{Y}_s^A ar{s} \gamma_5 s)$$

 $\mathcal{Y}_u^A \approx \frac{\sqrt{2B}}{\sqrt{3}v f^2} m_u \xi_A^u$

A Decay continued

$m_A < 1.3$ GeV: chiral perturbation theory

Hadronic decay into tri-meson

$$\Gamma(A \to \Pi_i \Pi_j \Pi_k) = \frac{1}{256S_{ijk}\pi^3 m_A} \int_{(m_j + m_k)^2}^{(m_A - m_i)^2} ds |\mathcal{M}_A^{ijk}|^2 \\ \sqrt{1 - \frac{2(m_j^2 + m_k^2)}{s} + \frac{(m_j^2 - m_k^2)^2}{s^2}} \times \sqrt{\left(1 + \frac{s - m_i^2}{m_A^2}\right)^2 - \frac{4s}{m_A^2}} \quad \mathcal{M}_A^{ijk} \propto O_{AA} \mathcal{A}_A^{ijk} + \sum_l O_{Al} \mathcal{A}^{ijkl}$$

Radiative hadronic decay

$$A \to \pi^+ \pi^- \gamma \qquad \qquad \Gamma(A \to \pi^+ \pi^- \gamma) = \int_{4m_\pi^2}^{m_A^2} ds \Gamma_0(s) |O_{A\eta} B_\eta(s) + O_{A\eta'} B_{\eta'}(s)|^2$$

ZHDM

Two Higgs Doublet Model (CP-conserving): $\phi_{1,2}$

After EWSB, 5 physical Higgses: **CP-even Higgses:** h, H, CP-odd Higgs: A, charged Higgses: H^{\pm}

parameters (CP-conserving, flavor limit, Z_2 symmetry)

 $v, \tan eta, lpha, m_h, m_H, m_A, m_{H^{\pm}}$

soft
$$Z_2$$
 breaking: m_{12}^2

<u>Alignment limit</u>: *h* is 125 GeV Higgs, $\cos(\beta - \alpha) \sim 0$

- Type I: ϕ_1 couples quarks and leptons all fermion couplings suppressed at large tan $\beta \implies$ LLP
- Type II, L, F: $\phi_{1,2}$ couples to at least one type of quarks or leptons unsuppressed couplings of scalars to at least one type of fermions for the entire region of tan $\beta \implies$ difficult to realize very weakly coupled long-lived scalars

constraints

- Theoretical constraints: unitarity, perturbativity, vacuum stability
- EW precision constraints
- Flavor constraints
- Invisible Higgs decay
- LEP & LHC H^{\pm} search

Two benchmark scenarios

$$\begin{split} \xi_A^f|_{\cos(\beta-\alpha)=0} &= 1/\tan\beta, \\ \xi_H^V &= c_{\beta-\alpha} = 1/\tan\beta, \\ \xi_H^f &= c_{\beta-\alpha}(1-s_{\beta-\alpha}) \approx 1/(2\tan^3\beta) + \mathcal{O}(c_{\beta-\alpha}^5) \end{split}$$

Light cP-even Scalar

Light cP-even Scalar

I T P

Other constraints on Light Scalar Searches

- **CHARM bounds: light ALP** ٠
- Supernova: $NN \rightarrow NNS(A)$

CHARM, PLB 157 (1985) 458

Turner, PRL 60 (1988) 1797

- B meson decays: $B \rightarrow K^* \phi$ (LHCb) ٠
- D meson decays: $D^+ \rightarrow \pi^+ \phi$ (LHCb) ٠

LHCb, 1508,04094, 1612.07818

PDG, LHCb, 2011.00217

- Kaon decays: $K^+ \rightarrow \pi^+ \phi$ (NA62, MicroBooNE, E949) BNL-E949, 0903.0030
- LEP: $e^-e^+ \rightarrow Z^*\phi$

NA62, 2103.15389 MicroBooNE, 2106.00568 Winkler, 1809.01876 Clarke, Foot and Volkas, 1310.8042

Light Scalars Reaches at FPF

$$\begin{split} \xi_A^f|_{\cos(\beta-\alpha)=0} &= 1/\tan\beta, \\ \xi_H^V &= c_{\beta-\alpha} = 1/\tan\beta, \\ \xi_H^f &= c_{\beta-\alpha}(1-s_{\beta-\alpha}) \approx 1/(2\tan^3\beta) + \mathcal{O}(c_{\beta-\alpha}^5) \end{split}$$

Without Double Scalar Production

Double Scalar Production

Governed by gauge symmetry and not suppressed

20

 $\mathcal{L} \supset \xi_{\phi\phi}^{ij} rac{\phi^2}{v^2} m_j ar{f}_i P_R f_j + \xi_{AA}^{ij} rac{A^2}{v^2} m_j ar{f}_i P_R f_j + h.c.$

Effective couplings

In Type-I 2HDM

$$\begin{aligned} \xi_{\phi\phi}^{ij} \simeq \xi_{AA}^{ij} \simeq \frac{g^2}{64\pi^2} \sum_k V_{ki}^* \left[f_0(x_k, x_{H^{\pm}}) + f_1(x_k, x_{H^{\pm}}) \log x_k \right. \\ \left. + f_2(x_k, x_{H^{\pm}}) \log x_{H^{\pm}} \right] V_{kj} + \mathcal{O}(\cos(\beta - \alpha), 1/\tan\beta). \end{aligned}$$

Light Scalars Reaches at FPF

$$\begin{split} \xi_A^f|_{\cos(\beta-\alpha)=0} &= 1/\tan\beta, \\ \xi_H^V &= c_{\beta-\alpha} = 1/\tan\beta, \\ \xi_H^f &= c_{\beta-\alpha}(1-s_{\beta-\alpha}) \approx 1/(2\tan^3\beta) + \mathcal{O}(c_{\beta-\alpha}^5) \end{split}$$

0

More on Scalar EFTS

$$\mathcal{L} = -\frac{1}{2}m_{\phi}^{2}\phi^{2} - \sum_{f}\xi_{\phi}^{f}\frac{m_{f}}{v}\phi\bar{f}f + \xi_{\phi}^{W}\frac{2m_{W}^{2}}{v}\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi}^{Z}\frac{m_{Z}^{2}}{v}\phi Z^{\mu}Z_{\mu}$$

$$+ \xi_{\phi\phi}^{W}\frac{g^{2}}{4}\phi\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi\phi}^{Z}\frac{g^{2}}{8\cos^{2}\theta_{W}}\phi\phi Z^{\mu}Z_{\mu} + \xi_{\phi}^{g}\frac{\alpha_{s}}{12\pi v}\phi G_{\mu\nu}^{a}G^{a\mu\nu} + \xi_{\phi}^{\gamma}\frac{\alpha_{ew}}{4\pi v}\phi F_{\mu\nu}F^{\mu\nu}$$

Dark Higgs: $\xi = \sin \theta$

HS, Wei Su, 2402.xxxxx

2HDM (Type-II):

$$\begin{cases} \xi_{H}^{V} = \cos(\beta - \alpha) = \cot \beta \\ \xi_{H}^{f} = \cot^{3} \beta \\ \xi_{HH}^{V} = 1 \end{cases} \qquad \begin{cases} \xi_{A}^{V} = \cos(\beta - \alpha) = 0 \\ \xi_{A}^{f} = \cot \beta \\ \xi_{AA}^{V} = 1 \end{cases} \qquad sH^{\dagger i}(d_{cp}{}^{a}Q_{rai}) \\ s^{2}H^{\dagger i}(d_{cp}{}^{a}Q_{rai}) \end{cases}$$
2HDM (Type-II)+a:

$$\begin{pmatrix} A_{0} \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \end{pmatrix} \begin{pmatrix} A \end{pmatrix} \qquad 2 = 0 \\ \xi_{A}^{V} = \cot \beta \\ \xi_{AA}^{V} = 1 \end{cases}$$

$$\begin{pmatrix} A_0 \\ a_0 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} A \\ a \end{pmatrix} \qquad m_A^2 \gg$$

$$\xi_a^V = \cos(\beta - \alpha) \sin \theta$$

$$\xi_A^u = \cot \beta \sin \theta, \xi_A^d = \tan \beta \sin \theta$$

I T P

More on Scalar EFTS

2HDM (Type-II)+a:

 $\xi_a^V = \cos(\beta - \alpha)\sin\theta$ $\xi^{u}_{A} = \cot \beta \sin \theta$, $\xi^{d}_{A} = \tan \beta \sin \theta$

24

 $\sin\theta \sim 10^{-2} - 10^{-4}$

TeV m_A can naturally generates such small mixing and evades constraints

More on Scalar EFTS 2HDM (Type-II)+a: $\xi_a^V = \cos(\beta - \alpha) \sin \theta$

More on Scalar EFTS

$$\mathcal{L} = -\frac{1}{2}m_{\phi}^{2}\phi^{2} - \sum_{f}\xi_{\phi}^{f}\frac{m_{f}}{v}\phi\bar{f}f + \xi_{\phi}^{W}\frac{2m_{W}^{2}}{v}\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi}^{Z}\frac{m_{Z}^{2}}{v}\phi Z^{\mu}Z_{\mu}$$

$$+ \xi_{\phi\phi}^{W}\frac{g^{2}}{4}\phi\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi\phi}^{Z}\frac{g^{2}}{8\cos^{2}\theta_{W}}\phi\phi Z^{\mu}Z_{\mu} + \xi_{\phi}^{g}\frac{\alpha_{s}}{12\pi v}\phi G_{\mu\nu}^{a}G^{a\mu\nu} + \xi_{\phi}^{\gamma}\frac{\alpha_{ew}}{4\pi v}\phi F_{\mu\nu}F^{\mu\nu}$$

Dark Higgs: $\xi = \sin \theta$

More on Scalar EFTS

$$\mathcal{L} = -\frac{1}{2}m_{\phi}^{2}\phi^{2} - \sum_{f}\xi_{\phi}^{f}\frac{m_{f}}{v}\phi\bar{f}f + \xi_{\phi}^{W}\frac{2m_{W}^{2}}{v}\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi}^{Z}\frac{m_{Z}^{2}}{v}\phi Z^{\mu}Z_{\mu}$$

$$+ \xi_{\phi\phi}^{W}\frac{g^{2}}{4}\phi\phi W^{\mu+}W_{\mu}^{-} + \xi_{\phi\phi}^{Z}\frac{g^{2}}{8\cos^{2}\theta_{W}}\phi\phi Z^{\mu}Z_{\mu} + \xi_{\phi}^{g}\frac{\alpha_{s}}{12\pi v}\phi G_{\mu\nu}^{a}G^{a\mu\nu} + \xi_{\phi}^{\gamma}\frac{\alpha_{ew}}{4\pi v}\phi F_{\mu\nu}F^{\mu\nu}$$

Dark Higgs: $\xi = \sin \theta$

2HDM (Type-I):	$\xi_{H}^{V} = \cos(\beta - \alpha) = \cot \beta$ $\xi_{H}^{f} = \cot^{3} \beta$ $\xi_{HH}^{V} = 1$	$\xi_A^V = \cos(\beta - \alpha) = 0$ $\xi_A^f = \cot \beta$ $\xi_{AA}^V = 1$	$s{H^\dagger}^i(d_{cp}{}^aQ_{rai}) \ s^2{H^\dagger}^i(d_{cp}{}^aQ_{rai})$

2HDM (Type-II)+a: HS, Wei Su, 2402.xxxx $\xi_a^V = \cos(\beta - \alpha) \sin \theta$ $\xi_A^u = \cot \beta \sin \theta, \xi_A^d = \tan \beta \sin \theta$

D meson physics?

Scalar (singlet) extension of the SMEFT $\longrightarrow \phi$ EFT $\overset{HS, Sun, Yu, 2305.16770}{HS, Sun, Yu, 2306.05999}$

- CHARM (FASER-like) bounds: reinterpretation
- Supernova bound: $NN \rightarrow NNS(A)$ suppressed, $NN \rightarrow NNSS(AA)$?
- Dark Matter

More on Lepton colliders

- Z associated production (like LEP $e^-e^+
 ightarrow Z^* \phi$)
- h/Z/W decay (isotropic, commonly considered)
- decay of mesons, hadrons, radiative bottomonium (from h/Z/W decay)
- photon fusion (not important)

New detectors: HErmetic CAvern TrackEr (HECATE)

Chrząszcza *et al.* 2011.01005

A large volume cavern is needed for FCC-hh/SppC detectors, while the detectors at the ee phase are rather small. Thus a MATHUSLA-like detector can be installed.

- Origins of the LLPs: two bottoms or charms, one of which can be tagged in the standard detector
- Complementary to MET search at the main detector
- More sensitive to lighter and longer lifetime particles, compared to displaced vertices search at the main detector in the

conclusion

- Light LLP appear in many new physics scenarios
- Light particle copiously produced in the forward region of Hadron colliders (LHC), and FASER/FASER2 (FPF): new experiments to detect light LLP
- Light (pseudo)scalar
 - Model-independent framework, coupling modified in EFT
 - Scalar production and decay (hadronic)
 - Public code to calculate decay
 - (https://github.com/shiggs90/Light_scalar_decay.git)
- ***** 2HDM case study: large tanβ region of Type-I 2HDM
 - > decay length: 10^{-8} to 10^{5} m, probe very large tan β
 - FASER2 vs. FASER: higher Lum, larger detector
- Complementary to prompt search, LLP search in transverse region, and fixed target exp at low energies, or other astrophysical processes (e.g. supernova)

 $\wedge \wedge \wedge$

Backup Slides

Light cP-odd Scalar

Light cP-odd Scalar

constraints

constraints

Invisible Higgs decays

$$\operatorname{Br}(h \to \phi \phi) = \frac{\Gamma(h \to \phi \phi)}{\Gamma_h} \approx \frac{1}{\Gamma_h^{\mathrm{SM}}} \frac{g_{h\phi\phi}^2}{8\pi m_h^2} \left(1 - \frac{4m_H^2}{m_h^2}\right)^{1/2} \simeq 4700 \cdot \left(\frac{g_{h\phi\phi}}{v}\right)^2 \quad < 0.24$$

 $Br(h \to \phi \phi) = 0$

$$\begin{split} Light \; H : \cos(\beta - \alpha) &= \tan 2\beta \frac{2\lambda v^2 + m_h^2}{2(m_H^2 - 3\lambda v^2 - m_h^2)} \approx \frac{1}{\tan\beta} \,, \\ Light \; A : \cos(\beta - \alpha) &= \tan 2\beta \frac{2\lambda v^2 + m_h^2 + 2m_A^2 - 2m_H^2}{2(m_H^2 - \lambda v^2 - m_h^2)} \approx \frac{1}{\tan\beta} \frac{2m_H^2 - m_h^2}{m_H^2 - m_h^2} \,, \end{split}$$

35

constraints

LEP H[±] search: m_{H±} > 85 GeV viable

LHC H[±] search

Huayang Song

constraints

• EW precision constraints: $m_{H\pm} \sim m_H \text{ or } m_A$

36

 $m_H \sim 0: \ m_A \sim m_{H^{\pm}} \lesssim 600 \ {
m GeV}$ $m_A \sim 0: \quad m_{H^{\pm}} \sim m_H \lesssim m_h,$ $\lambda v^2 \approx 0 |\cos(\beta - \alpha)| \sim 0.$