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Introduction
• EFTs are everywhere:


• Fermi Theory for β-decay


• Nucleon-nucleon interactions


• Phonons in CM


• ……


• They include the relevant degrees of freedom for a particular range of 
energies.



• In the case of the SM the process is as 
follows:


• Include all operators consistent with 
the symmetries of the SM to a given 
mass dimensions (5,6,7,8….)


• Remove those operators which are 
redundant under EOM and IBP


• The task is gigantic since in principle 
there are a huge amounts of 
operators.


• Is there a way to make sure how many 
there are?



Hilbert Series

• Hilbert series provides with a way to count the number of operators for a given 
mass dimension.


• One just need to specify the field content, representation and quantum numbers.


• It works for different number of space time dimensions and also for different 
spacetime symmetries.

ℋ = ∫ dμ
1
P

PE[∑
i

ϕi χR,i]+ΔH

• : project out Lorentz scalars


• : remove IBP


• : remove EOM

dμ
1
P
PE[∑

i

ϕi χR,i]



ℋ = ∫ dμ𝒢
1
P

PE[
N

∑
i=1

ϕi χR,i]

Haar measure: 
dμ𝒢 = dμSU(2)L×SU(2)R

dμgauge

Group invariant volume measure

Plethystic exponential: 
(Anti-)symmetrizing the arguments;


 Fermi/Bose statistics

Characters: 
Representation of each field


Example: Q = {3,2,
1
6

}, L = {1,2, −
1
2

}

ℐ(Q, L; x, y, u, z1, z2) = 3Q(x +
1
x

)(y +
1
y

)(z1 +
z2

z1
+

1
z2

)u1/6+3L(x +
1
x

)(y +
1
y

)u−1/2

ℋ = ∫ dμ PE[ℐ(Q, L; x, y, u, z1, z2)] = 1 + 57LQ3 + 4818L2Q6 + ⋅ ⋅ ⋅

 are group parameters of , and  is the group parameter of x, y SU(2)L, SU(2)R u U(1)

Hilbert series: 
An algebraic function;


Encoding information of polynomials

Spurions: 
Both fields and derivatives;


Not real fields;

Treated as complex variables

Counting operators Finding the coefficients



χ̄(0,0) = P(α, β, D)(1 − D2)

χ̄( 1
2 ,0) = P(α, β, D)((α +

1
α

) − D(β +
1
β

)), χ̄(0, 1
2 ) = P(α, β, D)((β +

1
β

) − D(α +
1
α

))

Short conformal characters:

P(α, β, D) = ((1 − Dαβ)(1 −
D
αβ

)(1 −
Dα
β

)(1 −
Dβ
α

))
−1

EOM:                         IBP:   ∂2ϕ ∼ m2ϕ, iγμ∂μψ ∼ mψ†, ⋯ 𝒪1 ∼ 𝒪2 + ∂𝒪3

Operators less than dimension 5.

ℋ = ∫ dμ
1
P

PE[∑
i

ϕi χR,i]+ΔH
• : project out Lorentz scalars


• : remove IBP


• Short conformal characters: remove EOM

dμ
1
P

• One has to correct the counting by redundancies 
due to EOM and IBP.



Non-supersymmetric theory
Fields

Supersymmetry

Scalar field , fermion field , etc.ϕ ψ Chiral superfield Φ

Derivatives Partial derivative ∂μ Super derivatives ∂α, ∂ ·α

Dα ≡ ∂α =
∂

∂θα
− iσμ

α ·αθ ·α∂μ;

D ·α ≡ ∂ ·α = −
∂

∂θ ·α
+ iθασμ

α ·α∂μ

{∂α, ∂ ·α} = 2iσμ
α ·α∂μ

∂ ·αΦ = 0, ∂αΦ† = 0

Lagrangian S = ∫ d4xℒ(x)
ℒ = ∫ d4θK(Φ, Φ†) + ∫ d2θW(Φ) + h . c .

Kahler potential Superpotential
Which one to choose,

D-term or F-term? 

Lorentz scalar

Singlet

∫ d4xW(Φi, ∂2·αSi)ℱ

= ∫ d4x{∂2·α[Skh(Φi, ∂2·αSi)]}ℱ ∼ ∫ d4x[Skh(Φi, ∂2·αSi)]𝒟,

Supersymmetry:



EOM in Supersymmetry
For a chiral superfield , equation of motion is given by . We can verify this relation by 
expanding  in components, i.e. , where , and we get 

 .

Φ ∂2
αΦ ∼ mΦ†

Φ Φ = ϕ(y) + 2θψ(y) + θθF(y) yμ = xμ + iθσmθ
∂2

αϕ = mϕ*, iσμ
α ·α∂μψα = mψ†

·α

Φ
∂αΦ

∂ ·α∂αΦ
∂β∂ ·α∂αΦ

∂ ·β∂β∂ ·α∂αΦ
⋯

=

Φ
∂ ·α∂αΦ

∂ ·β∂β∂ ·α∂αΦ
∂ ·γ∂γ∂ ·β∂β∂ ·α∂αΦ

⋯

∂αΦ
∂β∂ ·α∂αΦ

∂γ∂ ·β∂β∂ ·α∂αΦ
∂ ·τ∂γ∂ ·β∂β∂ ·α∂αΦ

⋯

+

Bosonic Part Fermionic Part

χ̄(0,0) = P(α, β, D)(1 − D2) χ̄( 1
2 ,0) = P(α, β, D)((α +

1
α

) − D(β +
1
β

))Free of EOM

Indices are chosen to be 
symmetric combinations

PE[∑
i

ϕi χR,i] = PE[Φχ̄(0,0) + PΦχ̄( 1
2 ,0)] P: spurion of super derivative

SUSY



IBP in Supersymmetry
—2 Independent IBP Relations

3 different derivatives ∂μ, ∂α, ∂ ·α 3 IBP relations

K ∼ K′￼+ ∂αXα

K ∼ K′￼+ ∂ ·αX ·α

K ∼ K′￼+ ∂μXμ

Only 2 of them are independent! K ∼ K′￼+ ∂α(∂ ·αXα ·α) + ∂ ·α(∂αXα ·α)

Still, we have 2 relations and the previous 1/P factor doesn’t work here. (P is not a rep here)

It is tempting to simply subtract the number of  to get the number of independent operators, 

because it seems like that one operator with one fewer derivative provides one IBP relation, and if we get 
rid of all these operators, our result is free of IBP. However it’s incorrect because these IBP relations can 
be linearly dependent!

Xα, X ·α



—Correction Space

We call  the first order correction space if all elements in  satisfy the following conditions:


.

𝒮1
j 𝒮1

j

𝒯1
ijsj ≠ 0, and ℐi𝒯1

ijsj = 0, (no sums over i), ∀sj ∈ 𝒮1
j

Starting with a space , we define the zeroth order equivalence relations on  as follows:





𝒪 𝒪

o1 ∼ o2 + ∑ ℐisi, oi ∈ 𝒪, si ∈ S0
i .

A space  is called the nth-order correction to  if there exist maps:

 


, such that:


, 


and is denoted as .

𝒮n
j 𝒪

𝒯n
ij : Sn

j → S(n−1)
i

𝒯n
ijsj ≠ 0, and 𝒯n−1

ki 𝒯n
ijsj = 0,∀sj ∈ Sn

j , ∀k

𝒮n
j ({𝒮n−1

i } → {𝒮n−2
i }), n ≥ 2

# of independent operators =

#{𝒪} − #∑ {𝒮0
i } + #∑ {𝒮1

i } − #∑ {𝒮2
i } + ⋯



e.g.   .𝒪i ∼ 𝒪j + ∑
n

∂μ𝒪μ
n, 𝒪i, 𝒪j ∈ {X}, 𝒪μ

n ∈ {Xμ}

 is the first order correction space!X[μν]ℐ1𝒯1
11s = ∂μ∂νX[μν] = 0

If we identify  and .𝒯1
11 ≡ ∂μ ℐ1 ≡ ∂ν

 𝒯1
11𝒯

2
11X

[μνρ] = ∂μ∂νX[μνρ] = 0  is the second order correction space!X[μνρ]

 𝒯2
11𝒯

3
11X

[μνρσ] = ∂μ∂νX[μνρσ] = 0  is the third order correction space!X[μνρσ]

D4D3D2D1

Diagram:

Order:

—SMEFT Example Revisit
Terminates with four total 
antisymmetric indices in 
four dimensions.

∑ DnχX[μ1μ2⋯μn] = 1 − D(α +
1
α

)(β +
1
β

) + D2[(1 + α2 +
1
α2

) + (1 + β2 +
1
β2

)] − D3(α +
1
α

)(β +
1
β

) + D4 =
1
P

Operator Space

IBP SpaceOperator Space First order correction space Second order correction space Third order correction space++ --

IBP Space



—6 Infinite Branches

{X}0,0

{Xα}1,0

{X ·α}0,1

{X(α1α2)}2,0

{X( ·α1
·α2)}0,2

{X ·α}2,1

{Xα}1,2

{X}2,2

∂α

∂ ·α

{X(α1α2α3)}3,0

{Xα ·α}3,1

{X(α1α2) ·α}4,1

{X}4,2

{Xα}5,2

{X}2,4{Xα ·α}1,3

{X( ·α1
·α2

·α3)}0,3
{Xα( ·α1

·α2)}1,4 {X ·α}2,5

l0

l1

l2

l0

l1

l0

l1 l0

l2 l1

⋅⋅⋅
⋅⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

S2
5

S3
6

S3
5

S0
1

S0
2

S1
1

S2
1

S1
2

S2
2

S1
4

S1
3

S2
3

S3
3 S4

5

S2
4

S3
4 S4

6

𝒪
Operator Space

IBP Space

IBP Space

1st correction space

1st correction space

1st correction space

1st correction space

2nd correction space

2nd correction space

2nd correction space

2nd correction space

2nd correction space

number =
= #{X}0,0

−#({X}0,1 + {X}1,0)
+#({X}1,2 + {X}2,1 + {X}0,2 + {X}2,0)
−#({X}1,3 + {X}3,1 + {X}0,3 + {X}3,0 + {X}2,2)
⋯



{X}0,0

{Xα}1,0

{X ·α}0,1

{X(α1α2)}2,0

{X ·α}2,1

{Xα}1,2

{X}2,2

∂α

∂ ·α

{X(α1α2α3)}3,0

{Xα ·α}3,1

{X(α1α2) ·α}4,1

{X}4,2

{Xα}5,2

l0

l1

l2

l0

l1

l0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

—First Branch

It doesn’t terminate because one can form infinite numbers of indices to be fully symmetric, 
in contrast to the antisymmetric case.

∂α∂βX{αβ⋯} = 0

SMEFT Diagram

∂μ∂νX[μν⋯] = 0



{X}0,0

{Xα}1,0

{X ·α}0,1

{X(α1α2)}2,0

{X ·α}2,1

{Xα}1,2

{X}2,2

∂α

∂ ·α

{X(α1α2α3)}3,0

{Xα ·α}3,1

{X(α1α2) ·α}4,1

{X}4,2

{Xα}5,2

l0

l1

l2

l0

l1

l0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

∂α∂α

∂α

—Second Branch

(∂αl0 + ∂ ·α∂2
α)X ·α = 0

(l0∂α + ∂αl1)Xα ·α = 0

(ln)
(α1α2⋅⋅⋅αn)(τβ1β2⋅⋅⋅βn)·α X ·α

(α1α2⋅⋅⋅αn)
= (an∂ ·α∂Z + bn∂Z∂ ·α)ϵ(Zα1α2⋅⋅⋅αn)(τβ1β2⋅⋅⋅βn)X ·α

(α1α2⋅⋅⋅αn)

an = (−1)n 2
(n + 1)!

, bn = (−1)n 2
(n + 2)n!

Fully determine the maps

. 

. 

.



—Third Branch

{X}0,0

{Xα}1,0

{X ·α}0,1

{X(α1α2)}2,0

{X ·α}2,1

{Xα}1,2

{X}2,2

∂α

∂ ·α

{X(α1α2α3)}3,0

{Xα ·α}3,1

{X(α1α2) ·α}4,1

{X}4,2

{Xα}5,2

l0

l1

l2

l0

l1

l0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

∂α∂α

∂ ·α

∂α

lnln−1 = 0,∀n ≥ 1

Non-trivial!

• 


• 


•

∂α∂βX{αβ⋯} = 0 ↔ {∂α, ∂β} = 0

(∂αl0 + ∂ ·α∂2
α) = 0 ↔ [{∂α, ∂ ·α}, ∂β] = 0

lnln−1 = 0 ↔ [{∂α, ∂ ·α}, {∂β, ∂ ·β}] = 0

Deep reason?



{X}2,1

{X}1,2

{X}2,2

{X}3,1

{X}n,1

{X}4,2

{X}2,4{X}1,3

l0

ln−3

l0

⋅ ⋅ ⋅
⋅ ⋅ ⋅

{X}p,q

𝒢1

𝒢2

⋅ ⋅ ⋅
⋅ ⋅ ⋅

ln−4
{X}n−1,2

{X}n,2

{X}n−2,1

𝒢3

Any additional branches/corrections?

•  


• All three composite maps must vanish


    


    


     


•  


• Suppose , the following two conditions must 

be satisfied


    

p = q

l0{X}2,4 = l0𝒢1{X}p,p

l0{X}4,2 = l0𝒢2{X}p,p

(∂2
α{X}4,2 + ∂2·α{X}2,4) = (∂2

α𝒢1 + ∂2·α𝒢2){X}p,p

p ≠ q

p ≥ 4

∂α{X}n,2 = ∂α 𝒢3{X}p,q = 0
ln−3{X}n,2 = ln−3𝒢3{X}p,q = 0



—Summation

number =
= #{X}0,0

−#({X}0,1 + {X}1,0)
+#({X}1,2 + {X}2,1 + {X}0,2 + {X}2,0)
−#({X}1,3 + {X}3,1 + {X}0,3 + {X}3,0 + {X}2,2)
+#({X}1,4 + {X}4,1 + {X}0,4 + {X}4,0 + {X}4,2 + {X}2,4)
⋯

∑ PpQq χXp,q

= 1
−(Px + Qy)
+(PQ2x + P2Qy + P2(x2 − 1) + Q2(y2 − 1))
−(PQ3xy + P3Qxy + P3(x3 − 2x) + Q3(y3 − 2y) + P2Q2)
⋯

This becomes the 1/P factor in supersymmetry, and 
when we put this into Hilbert series, it will automatically 

remove all IBP redundancies.

P,Q represent two super derivatives

ℋ = ∫ dμ
1

Pnew
PE[∑

i

ϕi χR,i] + ΔH

{X}0,0

{Xα}1,0

{X ·α}0,1

{X(α1α2)}2,0

{X( ·α1
·α2)}0,2

{X ·α}2,1

{Xα}1,2

{X}2,2

∂α

∂ ·α

{X(α1α2α3)}3,0

{Xα ·α}3,1

{X(α1α2) ·α}4,1

{X}4,2

{Xα}5,2

{X}2,4{Xα ·α}1,3

{X( ·α1
·α2

·α3)}0,3 {Xα( ·α1
·α2)}1,4 {X ·α}2,5

l0

l1

l2

l0

l1

l0

l1 l0

l2 l1

⋅⋅⋅
⋅⋅⋅⋅⋅⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅

S2
5

S3
6

S3
5

S0
1

S0
2

S1
1

S2
1

S1
2

S2
2

S1
4

S1
3

S2
3

S3
3 S4

5

S2
4

S3
4 S4

6

𝒪

In practical use, we will truncate this infinite series.



—Examples

6

3

3

1

1

1

∂α

∂ ·α

l0

l0

𝒪(∂α
2∂ ·α

2Φ2Φ†2)

∂α[Φ(∂αΦ)(∂ ·αΦ†)(∂ ·αΦ†)] ∼ (∂αΦ)(∂αΦ)(∂ ·αΦ†)(∂ ·αΦ†) − 2Φ(∂αΦ)(∂α∂ ·αΦ†)(∂ ·αΦ†),
∂α[Φ2(∂ ·αΦ†)(∂α∂ ·αΦ†)] ∼ 2Φ(∂αΦ)(∂α∂ ·αΦ†)(∂ ·αΦ†) + Φ2(∂α∂ ·αΦ†)(∂α∂ ·αΦ†),
∂α[Φ(∂ ·α∂αΦ)Φ†(∂ ·αΦ†)] ∼ (∂ ·α∂αΦ)(∂αΦ)Φ†(∂ ·αΦ†) + Φ(∂ ·α∂αΦ)Φ†(∂α∂ ·αΦ†),
∂ ·α[(∂αΦ)(∂αΦ)Φ†(∂ ·αΦ†)] ∼ (∂αΦ)(∂αΦ)(∂ ·αΦ†)(∂ ·αΦ†) + 2(∂ ·α∂αΦ)(∂αΦ)Φ†(∂ ·αΦ†),
∂ ·α[(∂αΦ)(∂ ·α∂αΦ)Φ†2] ∼ (∂ ·α∂αΦ)(∂ ·α∂αΦ)Φ†2 − 2(∂αΦ)(∂ ·α∂αΦ)Φ†(∂ ·αΦ†),
∂ ·α[Φ(∂αΦ)Φ†(∂α∂ ·αΦ†)] ∼ Φ(∂ ·α∂αΦ)Φ†(∂α∂ ·αΦ†) − Φ(∂αΦ)(∂α∂ ·αΦ†)(∂ ·αΦ†) .

Only 5 of these are independent! The independent number 
is therefore 6-5=1, which is the same as 6-3-3+1+1-1=1.

We don’t need to find all relations, not even the 
explicit form of operators in IBP spaces. What we 
do is using Hilbert series to count the number of 
operators in each correction space, and calculate 
the summation. 



12

6

16

4

4

10

5

∂α

∂ ·α

14

l0

l0

l1 l0

𝒪(∂α
4∂ ·α

4Φ1Φ2Φ†
1)

12-6-16+4+10+4-5-4+1=0

24

15

15

1

1

7

7

6

∂α

∂ ·α

2 1

12

l0

l1 l0

l0

l1 l0

𝒪(∂α
4∂ ·α

4Φ2Φ†2)

24-15-15+1+1+7+7-2-2-6+1+1=2

—More flavors and Derivatives

Schouten identity makes it even more difficult



Vector superfields

• So far we have just considered chiral superfields


• The formalism can also be applied for vector interactions.


• Lets remind how gauge abelian terms are included in supersymmetry:

group characters with a spurion for the field. This allows one to work with the building

blocks free of EOM. Adding the P
�1(P,Q,↵,�, z) factor will remove all IBP redundancies,

and finally integrating over Haar measure of both spacetime and internal groups projects out

the invariant operators. Although the formal expansion of P�1(P,Q,↵,�, z) (2.10) is infinite,

it actually terminates at given order due to the fact that one cannot build arbitrary larger

representation with finite number of superfields and derivatives. To speed up calculations,

it is often beneficial to determine the maximum representation (for a given field/derivative

content) before plugging into (2.1) and truncating P
�1(P,Q,↵,�, z) appropriately.

There is a subtlety we should mention before moving forward. The conformal characters

for the representations listed earlier are not orthonormal, a consequence of the fact the that

conformal group is non-compact. As a result, Eq. (2.1) contains an unwanted�H piece, which

is common both in non-supersymmetric case [5] and supersymmetric case [25]. However, as

proved/argued in these papers, this term only contains operators with mass dimensions less

than or equal to four, and is therefore irrelevant if our goal is to determine the operator basis

for higher dimensional operators (dimension � 5). As a result, we will ignore this term in the

rest of this paper.

Having reviewed (2.1), we are now prepared to include gauge interactions, where one

needs to consider gauge invariance in addition to Lorentz symmetry and R-symmetry. To get

familiar with how the procedure works, we first discuss the abelian case in the next section,

and then move to non-abelian case in section 2.4.

2.2 Abelian supersymmetric gauge theory

In an N = 1 supersymmetric U(1) gauge theory, chiral superfields �l transform as,

�l ! �0
l = e

�itl⇤�l; �†
l ! �

0†
l = e

itl⇤†
�†
l , (2.11)

where tl is a real number (identified as the gauge charge) and ⇤,⇤† are chiral and antichiral

superfields; ⇤ and ⇤† must be superfields in order for the transformed �0
l (�

0†
l ) to remain chiral

(antichiral). To build a gauge invariant term out of these chiral and antichiral superfields, we

need to introduce a vector superfield V that transforms as V ! V
0 = V + S + S

†, where S

is a chiral superfield. Setting S = i⇤ and S
† = �i⇤†, we find that the following term (for a

single flavor) is gauge invariant under the U(1) local transformations (2.11):

�†
e
tV � ! �

0†
e
tV 0

�0 = �†
e
tV �. (2.12)

This term can be treated as a generalization of the Kähler term �†� without gauge interac-

tions. To build a gauge invariant term out of the vector superfield alone – the generalization

of the field strength F
µ⌫ in a non-supersymmetric case – one constructs the following:

W↵ ⌘ �1

4
D

2
D↵V, W ↵̇ ⌘ �1

4
D

2
D↵̇V. (2.13)

The transformation laws W↵ ! W
0
↵ = W↵,W ↵̇ ! W

0
↵̇ = W ↵̇ follow from the gauge transfor-

mation of vector superfield defined above.
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group characters with a spurion for the field. This allows one to work with the building

blocks free of EOM. Adding the P
�1(P,Q,↵,�, z) factor will remove all IBP redundancies,

and finally integrating over Haar measure of both spacetime and internal groups projects out

the invariant operators. Although the formal expansion of P�1(P,Q,↵,�, z) (2.10) is infinite,

it actually terminates at given order due to the fact that one cannot build arbitrary larger

representation with finite number of superfields and derivatives. To speed up calculations,

it is often beneficial to determine the maximum representation (for a given field/derivative

content) before plugging into (2.1) and truncating P
�1(P,Q,↵,�, z) appropriately.

There is a subtlety we should mention before moving forward. The conformal characters

for the representations listed earlier are not orthonormal, a consequence of the fact the that

conformal group is non-compact. As a result, Eq. (2.1) contains an unwanted�H piece, which

is common both in non-supersymmetric case [5] and supersymmetric case [25]. However, as

proved/argued in these papers, this term only contains operators with mass dimensions less

than or equal to four, and is therefore irrelevant if our goal is to determine the operator basis

for higher dimensional operators (dimension � 5). As a result, we will ignore this term in the

rest of this paper.

Having reviewed (2.1), we are now prepared to include gauge interactions, where one

needs to consider gauge invariance in addition to Lorentz symmetry and R-symmetry. To get

familiar with how the procedure works, we first discuss the abelian case in the next section,

and then move to non-abelian case in section 2.4.

2.2 Abelian supersymmetric gauge theory

In an N = 1 supersymmetric U(1) gauge theory, chiral superfields �l transform as,

�l ! �0
l = e

�itl⇤�l; �†
l ! �

0†
l = e

itl⇤†
�†
l , (2.11)

where tl is a real number (identified as the gauge charge) and ⇤,⇤† are chiral and antichiral

superfields; ⇤ and ⇤† must be superfields in order for the transformed �0
l (�

0†
l ) to remain chiral

(antichiral). To build a gauge invariant term out of these chiral and antichiral superfields, we

need to introduce a vector superfield V that transforms as V ! V
0 = V + S + S

†, where S

is a chiral superfield. Setting S = i⇤ and S
† = �i⇤†, we find that the following term (for a

single flavor) is gauge invariant under the U(1) local transformations (2.11):

�†
e
tV � ! �

0†
e
tV 0

�0 = �†
e
tV �. (2.12)

This term can be treated as a generalization of the Kähler term �†� without gauge interac-

tions. To build a gauge invariant term out of the vector superfield alone – the generalization

of the field strength F
µ⌫ in a non-supersymmetric case – one constructs the following:

W↵ ⌘ �1
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D

2
D↵V, W ↵̇ ⌘ �1

4
D

2
D↵̇V. (2.13)

The transformation laws W↵ ! W
0
↵ = W↵,W ↵̇ ! W

0
↵̇ = W ↵̇ follow from the gauge transfor-

mation of vector superfield defined above.
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• One subtlety is that we have to 
include the Haar measure for the 
U(1)R.


• The Hilbert series works in the same 
way as in SMEFT except we have to 
add the Haar measure for two U(1) 
groups.

case leaves e
V carrying no weight in the PE, meaning one can add arbitrary powers of it to

any operator. To account for the complex nature of the supersymmetric gauge parameter ⇤

we label fields with two gauge charges, one corresponds to ⇤ and the other corresponds to

⇤† (said another way, as the real and imaginary parts of ⇤). Under this parametrization,

the representation of a general superfield is given by S ⇠ (j1, j2; g1, g2; z), where j1, j2 label

the Lorentz group representation and g1, g2 represent charges under ⇤,⇤†, respectively. For

example, �l ⇠ (0, 0;�tl, 0),�
†
l ⇠ (0, 0; 0, tl), etc. To project a gauge-invariant operator, we

need two U(1) group parameters, as well as two U(1) Haar measures.

Putting the pieces together, let us apply the method to study the operator basis for an

abelian, supersymmetric U(1) gauge theory with a single flavor of matter superfields. For

simplicity, we’ll take the U(1) charge to be tl = 1 and R[�] = 0. Here, the explicit form for

the Hilbert series is9:

H(P,Q,�,�†
,W↵,W

↵̇
, e

V )

=

Z
dµLorentzdµgaugedµUR(1)P

�1(P,Q,↵,�, z)PE[I(�,�†
,W↵,W

↵̇
, e

V )],
(2.20)

where the Haar measures are

dµLorentz =
1

(2⇡i)2

I

|↵|=1

d↵

↵
(1� ↵

2)

I

|�|=1

d�

�
(1� �

2), (2.21a)

dµgauge =
1

(2⇡i)2

I

|g1|=1

dg1

g1

I

|g2|=1

dg2

g2
, (2.21b)

dµUR(1) =
1

2⇡i

I

|z|=1

dz

z
, (2.21c)

and

I(�,�†
,W↵,W

↵̇
, e

V )bos = �g�1
1 �̃(0,0) + �†

g2�̃(0,0)+ (2.22)

P (DW↵)�̃(1,0) +Q(DW
↵̇
)�̃(0,1) + e

V
g1g

�1
2

I(�,�†
,W↵,W

↵̇
, e

V )ferm = P (D�)g�1
1 z

�1
�̃( 12 ,0)

+Q(D�†)g2z�̃(0, 12 )
+W↵z�̃( 12 ,0)

+W
↵̇
z
�1

�̃(0, 12 )

are the arguments of the bosonic and fermionic plethystic exponentials10. The conformal

characters �̃ are given in (2.8) and g1, g2 are the group characters for the two U(1) groups;

� is accompanied by the group parameter for one U(1), �† is accompanied by the group

parameter for the other U(1), and e
V appears with both group parameters. Note that, like

the chiral superfields, the field strength superfields contribute one term to the bosonic PE

and one term to the fermionic PE, and we have used new spurions ((DW ) and (DW )) to

represent odd powers of superderivatives on the field strengths.

9
Here we have neglected �H terms. As explained in the text, these only contribute to operators with mass

dimension d  4.

10
Note that, in Eq. (2.22), the indices ↵,

↵̇
are purely cosmetic. The Lorentz transformation properties they

imply are carried by the characters �̃
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Same P factor as before!



• For a non-abelian case (e.g. SU(2) 
things work in the same way: Same P factor as before!

of superfields. As a result one needs twice the number of group parameters to label di↵erent

superfields. The same argument holds in the non-abelian case, so we must indicate two dif-

ferent representations for each superfield, S ⇠ (l1, l2; r1, r2; z), where r1, r2 label the represen-

tations under the two copies of the non-abelian group (and z is the R-charge). Taking SU(2)

as an example with matter in the fundamental representation, we have � ⇠ (0, 0; 2, 0; r),

�† ⇠ (0, 0; 0, 2; r�1). With these building blocks, we can construct the operator basis for

non-abelian case follow the same steps used as in the abelian case.

As an example, let’s consider the simplest non-abelian case – gauge group SU(2) – with

matter content consisting of a single chiral superfield flavor �,�† in the fundamental repre-

sentation. The Hilbert series in this case looks identical to (2.20):

H(P,Q,�,�†
,W↵,W

↵̇
, e

V ) = (2.25)
Z

dµLorentzdµgaugedµUR(1)P
�1(P,Q,↵,�, z)PE[I(�,�†

,W↵,W
↵̇
, e

V )],

but the Haar measures are di↵erent:

dµgauge =
1

(2⇡i)2

I

|g1|=1

dg1

g1
(1� g

2
1)

I

|g2|=1

dg2

g2
(1� g

2
2), (2.26)

as we need two SU(2) measures (with group parameters g1, g2) instead of two U(1) measures.

The argument of the PE, again for the choice R[�] = 0, is:

I(�,�†
,W↵,W

↵̇
, e

V )bos = �(g1 +
1

g1
)�̃(0,0) + �†(g2 +

1

g2
)�̃(0,0)+ (2.27)

P (DW↵)�̃(1,0) +QDW
↵̇
�̃(0,1) + e

V (g1 +
1

g1
)(g2 +

1

g2
)

I(�,�†
,W↵,W

↵̇
, e

V )ferm = P (D�)(g1 +
1

g1
)z�1

�̃( 12 ,0)
+Q(D�†)(g2 +

1

g2
)z�̃(0, 12 )

+

W↵z�̃( 12 ,0)
+W

↵̇
z
�1

�̃(0, 12 )
,

with conformal characters �̃ given in (2.8).

3 Conclusion and Discussion

In this paper we show how to count operators in N = 1 supersymmetric gauge theories.

We provide two examples: the abelian case and the non-abelian case with the explicit and

detailed Hilbert series constructions. The main di↵erence between supersymmetric gauge

case and the non-supersymmetric gauge theory is that one has to double the number of gauge

group parameters in order to give the correct e
V structure. Although the two examples

given in the text only deal with single flavor in the fundamental representation, the approach

can be extended to include more flavors of any representation and with arbitrary number

of vector/chiral/antichiral superfields. A shortcoming of the Hilbert series method (for both

supersymmetric and non-supersymmetric theories), however, is that it does not explicitly
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can be extended to include more flavors of any representation and with arbitrary number

of vector/chiral/antichiral superfields. A shortcoming of the Hilbert series method (for both

supersymmetric and non-supersymmetric theories), however, is that it does not explicitly
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of superfields. As a result one needs twice the number of group parameters to label di↵erent

superfields. The same argument holds in the non-abelian case, so we must indicate two dif-

ferent representations for each superfield, S ⇠ (l1, l2; r1, r2; z), where r1, r2 label the represen-

tations under the two copies of the non-abelian group (and z is the R-charge). Taking SU(2)

as an example with matter in the fundamental representation, we have � ⇠ (0, 0; 2, 0; r),

�† ⇠ (0, 0; 0, 2; r�1). With these building blocks, we can construct the operator basis for

non-abelian case follow the same steps used as in the abelian case.

As an example, let’s consider the simplest non-abelian case – gauge group SU(2) – with

matter content consisting of a single chiral superfield flavor �,�† in the fundamental repre-

sentation. The Hilbert series in this case looks identical to (2.20):
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as we need two SU(2) measures (with group parameters g1, g2) instead of two U(1) measures.

The argument of the PE, again for the choice R[�] = 0, is:
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with conformal characters �̃ given in (2.8).
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Conclusions

• Hilbert series are an useful tool to calculate the number of independent 
operators (IBP & EOM free) in an EFT.


• In this talk I have applied the formalism to an N=1 SUSY theory with chiral 
multiplets.


• EOMs redundancies can be treated similarly to non-supersymmetric theories.


• IBP generate a richer structure due to the existence of three derivatives and 
not just one.


• The techniques also works in super gauge theories.



• Future directions that we are exploring are the following:


• Connection to the superconformal group


• Identifying the structure of the operators using Young Tableaux techniques.


• Studying the role of super amplitudes in this approach.

Thank you!
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