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Physics requirements from CDR

» Tracking performance
* reconstruction efficiency > 99% for 1GeV tracks
* momentum resolution ~ per mille

* Lepton ID
* ID efficiency > 99%
* mis-ID rate < 2% for >5GeV isolated leptons

* Charged kaon ID: efficiency and purity > 90%
* Jet and missing energy: BMR < 4%

* Flavor tagging:
* b-jet tagging efficiency and purity > 80%
* c-jet tagging efficiency and purity > 60%



Tracking Requirement

The CEPC detector should have excellent track finding
efficiency and momentum resolution

* Expected energy and polar angle distributions of charged
particles from the leading SM processes at the Higgs
factory operation

« Wide range cover of energy spectra
» Track finding efficiency better than 99% is required

» Large solid angle coverage essential (|cos(theta)| = 0.99)
» for large acceptance and
« for separation of different processes
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Baseline Design from CDR

Area: [mZ2]

e Silicon External Tracker (SET) SET: 53.5, ETD: 9.9
* Helps in extrapolating from TPC/DCH to Calorimeter Total: 63.4
* Provides hit time-stamps for bunch crossing separation Silicon: > 127

* Endcap Tracking Detector (ETD)
* Improves reconstruction with reduced path in TPC/DCH E
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Components of SET and ETD with microstrip

* Sensor
* Microstrip sensors with detection area of 10x10 cm?, 50um pitch, 200pm thickness
 Two back-to-back single-sided microstrips with 7° stereo angle

* Readout electronics
* Custom designed ASICs with deep sub-micron CMOS technology
« ADC, zero suppression, sparsification, and possible time stamping

* Power and cooling
* DC-DC converter to reduce material and power dissipation in delivery system

* Forced cooling gas flow to provide sufficient head reduction for sensors and
electronics

* Mechanics and integration

. Lightwelight and stiff support structure based on Carbon fiber reinforced plastic
materia

* Both TPC and DCH and provide sufficient support SET and ETD



Silicon Strip Modules
* Design with mass production and low cost

* large number of modules required for the strip Wire-bonds

detector .:EZL'?"-'-

. Wire- onH(s:CStar Eg\gg oS
* Independent module operation i N
..--.-. Hybrid

* to avoid potential losses caused by one or several
modules in the same line o

* each module can be disconnected from the bias
line

* E.g. HV multiplexer switch (MUX) controlled
through detector control system (DCS) P

Sensor

~97mm



Silicon Strip Sensor

ATLAS ITk Strip CEPC

* AC-coupled n-type implants in p-type (n*-in-p) FZ silicon .

bulk Microstrip sensors with detection
u

area of 10x10 cm?, 50pm pitch,
200pm thickness

* large signal after irradiation compared with p-in-n in current SCT

n*-in-n higher cost (20%-50%) relative to n+-in-p

» require double-sided processing reduces yield * Two back-to-back single-sided
« more complicated steps in overall processing microstrips with 7° stereo angle
e Strip pitch 75.5pm  May consider cost-effective

* 1280 readout strips technology with less radiation

On a stave, the stereo angle is achieved by rotating the » 8-inch line to be explored
modules on both sides by 26 mrad

Chose 6-inch production
* No large scale production of sensors on a 8-inch production line
 Cost, schedule and yield would be highly uncertain



Components of ATLAS ITk Strip Detector
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ATLAS Simulation ITk Strip Layout
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Barrel Radius #of # of # of # of # of Area
Layer: [mm] staves modules hybrids of ABCStar channels [m?2]
LO 405 28 784 1568 15680 4.01M 7.49
L1 562 40 1120 2240 22400 5.73M 10.7
L2 762 56 1568 1568 15680 4.01M 14.98
L3 1000 72 2016 2016 20160 5.16M 19.26
Total half barrel 196 5488 7392 73920 18.92M 52.43
Total barrel 392 10976 14784 147840 37.85M  104.86
End-cap Z-pos. # of # of # of # of # of Area
Disk: [mm] petals modules hybrids of ABCStar channels [m?]
DO 1512 32 576 832 6336 1.62M 5.03
D1 1702 32 576 832 6336 1.62M 5.03
D2 1952 32 576 832 6336 1.62M 5.03
D3 2252 32 576 832 6336 1.62M 5.03
D4 2602 32 576 832 6336 1.62M 5.03
D5 3000 32 576 832 6336 1.62M 5.03
Total one EC 192 3456 4992 43008 11.01M 30.2
Total ECs 384 6912 9984 86016 22.02M 60.4
Total 776 17888 24768 233856 59.87M

CEPC: > 126



Strip Module Material Calculation

* ATLAS ITk Short Strip Module

HCCStar

Power
i board ABCStar
M Hybrid

Wire-bonds

Sensor

Wire-bonds

DC-DC converter

~97mm

~97mm

Sensor Glue
1%

Solder
2%

Kapton
3%

ASIC Glue
1%

Flash metal

1%

Solder Resist
1%

Wire Bonds
0%
Shield Box
1%
Coil
3%
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ASIC for Readout and control electronics system

* Functionality

Analogue to digital conversion
Zero suppression
Sparsification

Time stamping

control

* Analog front-end circuit

CSA: low noise, low power

Discriminator for binary readout

TOT with energy info to improve space reso.
Digital process on chip

Buffer length for trigger latency

Zero suppression, cluster finder algorithm

Command protocol and trigger interpretation
compatible with DAQ

e Time stamp

* Default time resolution is the BX
clock cycle
Power distribution
* LV powering scheme based on DC-DC
converter
* Less power dissipation allows lower
material budget
Radiation tolerance
 ELT layout for analog circuit
* TMR for digital part

11



ATLAS ITk Strip Electronics

« Divide functionality into several ASIC chips

* Adapt to the geometry of sensor and module building

Acronym  Full Name Basic functionality Prototype lc’;:)i;l)uctlon
ABC ATLAS Binary Chip Converts incoming charge signalinto g5 ABCStar
hit information
HCC Hybrid Controller Chip  Interface between ABC130 and bus-tape = HCC130 HCCStar
AMAC Autonomous Momtor Prov1fies rpomtormg and interrupt AMAC-I AMACAI
and Control Chip functionality
FEAST FEAST Synchronous Step-Down Buck DC/DC FEAST upFEAST
converter
. Key parameters of ABC
Manufactured with 130nm CMOS process oo S
e 256 channels skl (N o NGE e A
« Noise below 1000e- after irradiation e YN B - IR R N T R e e
* Gain ~85mV/fC RAM RAM
* Average occupancy ~4 clusters per event Bising it I I a3 NS TR

e 12.8us FIFO
+ Data out 160Mbps

Voltage regulators

PR/LP wemp
LCB_IN

LCB & PR/LP

Decoders

1
Top_logic | 1 |




Cost Estimation for ASICs

* Time for ASIC R&D

* >3 MPW before the mass production
* > 3 years of R&D, depends on manpower

* Estimated cost
» Cost strongly depends on the technology feature size
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Local Support Structure: Stave

| TTCBus | | E-LinksA | | E-LinksB |

 Low mass carbon fibre local support structure 1 1
* Embedded Ti cooling pipes with evaporative CO, %._‘
<_4 OOC) w+ RX+ |2 ey

» Copper/Kapton co-cured bus tapes routing electrical
services from and to modules

* End-of-Substructure (EoS) card facilitates the transfer
of data, power and control signals between the
modules and the off-detector system.

* IpGBT chips provide data serialisation

* Versatile optical link (VTRx+) transmit signals to the
off-detector system. (VTRx+ converts electrical signal
to optical signals )

‘ryin and sec.

Region of carbon fibre
@ core between the EoSs
=155 mm

Connector between main and sec.

14



Strip Barrel Integration

» Staves will be inserted in four concentric Carbon cylinders
* 392 barrel staves in total

» Stave insertion demonstrated at RAL using cylinder mockup and stave
insertion prototype tooling

* Cylinder 3 and 2 are integrated first with LS module stave
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Barrel Service Module

41 Three compartment
#( 4l Aluminium tray
%

T, X

1 Services mockup

* The services comprise cooling pipes and associated manifolds,
electrical cables and optical fibre

» Each service module supplies 8 staves
» Patch-panels (PP) allow electrical connectors to exit radially
* Kept outside the end-cap radii

16



Roadmap towards TDR Silicon Strip Outer Tracker

* Tracking Performance and System Concept
* Numbers of Staves (SET), Petals (ETD)

* Design of Strip Modules

* Overall Electronics Architecture

* Powering Scheme for Low and High Voltage

» Critical to consolidate a baseline design for silicon strip modules

* Silicon Strip Sensor
* ASIC Set for Strip Detector
* CMOS Strip Sensor as option

Lots of work ahead, but we will get there ©

17
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CORE costs for ITk Strip Detector

6% 1%

1%

6%

8%
39%
11%
o% \—/
6%
16%
® Sensors © Readout Chips = Modules Local Supports Electronics
® Local Supports Assemblies ® Global Mechanics m Services B |ntegration

= Off-detector Electronics = Shipping
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