
Graph Neural Network
Tracking for Particle Physics

Shih-Chieh Hsu

University of Washington / A3D3

Jan 18 2024
IAS HEP 2024 Mini-workshop

Experiment and Detector

1

Tracking Challenges in HL-LHC

● Track reconstruction presents a
challenging pattern recognition
problem at the High Luminosity
Large Hadron Collider (HL-LHC)

○ In High Luminosity LHC, <μ> ~ 200
○ O (10k) particles, O(100k) hits

2

Limitations of conventional algorithms

● Conventional algorithms have
trouble scaling to dense
environment

○ Tracking takes ~40% of total
event reconstruction time

○ Cannot be easily ported to
parallel devices such as GPUs

● Call for novel solutions
○ Such as deep learning methods:

ExaTrkX

3

https://exatrkx.github.io/

TrackML Challenges

● TrackML challenge dataset
○ https://www.kaggle.com/c/trackml-

particle-identification
● Detector is highly segmented and

the data size is dynamic
● The detector is emerged in a

magnetic field, charged particles
leave a trajectory in the detector

● The objective of machine learning
is to reconstruct those trajectories

4

https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification

Conventional algorithm

● Recursive and branching nature makes it
difficult to run the conventional alg. in
highly paralleled devices (such as GPUs)

5

Conventional algorithm

● recursive and branching nature makes it
difficult to run the conventional alg. in
highly paralleled devices (such as GPUs)

6

Most
computational
expensive part

The ExaTrkX solution

● Challenges
○ Too many tracks (10,000) and dynamic number of

tracks in each event
○ Each hit has high-dimensional features (>=3D)

● ExaTrkX Solution
○ Data abstraction

→ point cloud (a set of data points in the measured
space)
○ Objective of ML

→ learn local relational information between two hits

7

ExaTrkX pipeline

● Proof of principle by Exa.TrkX project Method applied to TrackML data by
Exa.TrkX and L2IT project

8

Charline Rougier, CTD 2022

https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1051/epjconf/202125103047
https://indico.cern.ch/event/1103637/contributions/4821831/attachments/2453859/4205351/CTD_2022_CR_v2.pdf

9

Graph presentation of tracking data

● Node = 1 space-point
● Edge = connection between two nodes.

10

Example with 19 hits in the (z,r) plane

O(300k) space-points in an event
=> fully connected graph (1010) edges
=> Comprises unphysical connections

How de we choose the connections between nodes?

Graph creation: learning connections (two methods)

11

Graph edge construction efficiency

● High efficiency is a necessity: an edge lost during the graph construction can’t
be retrieved later.

12

13

Graph Neural Network

● GNN normally composed with node,
edge and graph network

○ Node / Edge network can be MLPs, Recurrent
Neural Networks, or Convolutional Neural
Networks when node is an image

● Message passing: unique component of
GNN

○ allows node and edge exchange information to
learn sophisticated hidden features

14

Assign edge scores

Edge classifier

15

Edge classifier

16

Effect of message passing

● Changes in AUC for each
step: 0.9869 → 0.9972 →
0.9991 → 0.9995 → 0.9997
→ 0.9997 …

● By recursively updating node
and edge features, the GNN
model improves its edge
predictions

17

Input to GNN

● Average graph size:
○ number of nodes: 90,000
○ number of edges: 1,500,000

● Using 8500 training events to train
the GNN

○ each epoch takes about 70 minutes
running on NVIDIA GPU A100

○ Takes more than one day to converge a
good result

● The memory consumption reaches
the limitation of A100.

18

19

Track labeling

● The output of GNN is weighted graph
● Apply DBScan to form track candidates
● Or traditional graph algorithm

cuGRAPH: weakly connected
components

● The two give very similar results.
○ The later is 1 ~ 2 orders of magnitude faster

than the former.

20

Each edge assigned
with a score by GNN

https://scikit-learn.org/stable/modules/generated/sklea%20rn.cluster.DBSCAN.html
https://github.com/rapidsai/cugraph

Tracking Performance

21

Accelerating the ExaTrkX pipeline

● Total time is reduced from 15 seconds to 0.7 seconds
● Optimization of the pipeline on GPUs

○ FAISS library for nearest neighbor search
○ cuGraph, GPU implementation of connected components
○ AMP, automatic mixed precision
○ FRNN, fixed radius nearest neighbor

22

arxiv:2202.06929

23

Tracking efficiency

24

H. Torres CTD 2023

GNN4ITk, L2IT

https://indico.cern.ch/event/1252748/contributions/5576737/attachments/2731045/4747598/CTD23-GNN4ITk-HTorres.pdf

Large Radius Tracking with GNN

● ExaTrkX is able to reconstruct prompt and displaced tracks at the same time.

25

arxiv:2203.08800

Heavy Neutral Lepton

Acceleration for Tracking

● The use of co-processor (GPU, FPGA) can potentially to
accelerate latency

● Heterogeneous computing workflow required additional care
to improve throughput

How can we enhance the scalability of the tracking workflow
and make the integration much easier?

26

ExaTrkX track finding pipeline

27

Integration into production framework

● Use the ExaTrkX pipeline for Track finding
● Integrated into the A Common Tracking Software (ACTS)

28

https://acts.readthedocs.io/en/latest/

Combinatoric KalmanFilter vs ExaTrkX

● Integrating into ACTS allows us to
compare ExaTrkX pipeline with the
existing algorithms

● A preliminary computing time
comparison between conventional
algorithms (CKF) and the ExaTrkX

● ExaTrkX was run in GPUs, while CKF
in CPUs

● A GPU-version of ACTS is under
development [traccc]. Would be
interesting to compare ExaTrkX with
the GPU version.

29

B. Huth CTD 2023

https://indico.cern.ch/event/1252748/contributions/5521546/attachments/2732718/4751067/slides_cdt_2023.pdf

ExaTrkX as a service

● Run the ExaTrkX track finding algorithm as a server
● Clients send requests to the server in order to get track candidates
● Standalone implementation: https://github.com/exatrkx/exatrxk-cpp-ctd2022

30

https://github.com/exatrkx/exatrxk-cpp-ctd2022

GNNs for Particle-Tracking on FPGAs

● Throughput-optimized: small graphs (28 nodes, 56 edges), < 1us latency
● Resource-optimized: large graphs (1344 nodes with 2688 edges), 6 us latency

31

Front. Big Data 5:828666 (2022)

Summary

● GNN-based track reconstruction with simulated data are promising and
realistic.

○ TrackML proof of principle, GNN4ITk provides competitive performance

● Prospect from active development
○ Full Integration to ACTS
○ Fair comparison to CKF GPU
○ Optimized latency and throughput through hardware-algorithm co-development and ML-aaS

heterogenous computing

32

Backup

33

34

Heterogeneous Computing

The most straightforward way to deploy algorithms
on coprocessors is to run on machines with
coprocessors

However, Direct connection can be inefficient
and expensive at scale

Direct connection

36

PCIe

As a Service Computing

Alternate coprocessor deployment
scheme where coprocessor-enabled
machines host an inference server and
remote jobs send inference requests via
network connection

gRPC/network

Clients Servers* 37* The servers do not necessarily need to be remote;
they can be just next to the client machine.

As a Service Computing

gRPC/network

Clients Servers 38

Pros:

● Factorized out the underlying backend
implementation

● More straightforward to integrate with the
production framework (e.g. Athena)

● Independent of the underlying technology
choices and algorithms

● Better scalability and resource utilization
(Reduce cost)

Cons:

- Adds complexity 39

Direct As a Service Computing

Pros:

- Already have working example

Cons:

- Can be an inefficient use of resources
- Expensive
- Machines without GPUs/FPGAs can’t

benefit from coprocessors

https://arxiv.org/pdf/2004.04334.pdf

ACTS with GNN (ExaTraX) Plugin (Direct inference)

ExaTrk TorchScript implementation done by
Benjamin Huth

TrackFinding (ExaTrk) can run locally with
CPU/GPU

ACTS TrkFitting still run only on CPU

SpaceMaker/Alg

ExaTrk/Alg

TrkFitting/Alg

ACTS

measurements

tracks

43

https://github.com/acts-project/acts/tree/main/Plugins/ExaTrkX

Integration of the ExaTrkX-as-a-service to ACTS

SpaceMaker/Alg

ExaTrkTritonClient/Alg

TrkFitting/Alg

ACTS

measurements

tracks

Client added in ACTS to communicate with Server

Server with
coprocessor

44

Users can swap between direct or triton inference easily

Client

gRPC/Network

Server

Serving GNN tracking Algo

proto trks

spacepoint

We can offload more algorithm to coprocessor to increase the throughput

Premimary inference timing studies

Direct GPU : 1.6 s

As-a-service GPU: ~5.8 s

- Some overhead in moving to
as-a-service.

- Implementation not fully
optimized

- I/O, copying between host &

device…etc

GNN tracking

45

ttbar PU200 with OpenDataDetector

