Graph Neural Network
Tracking for Particle Physics

Shih-Chieh Hsu
University of Washington / A3D3

w Jan 182024 32 s
onweRsiTY o IAS HEP 2024 Miniworkshop XP
WASHINGTON Xperime

Tracking Challenges in HL-LHC

e Track reconstruction presents a
challenging pattern recognition
problem at the High Luminosity

Large Hadron Collider (HL-LHC)
o In High Luminosity LHC, <u> ~ 200
o O (10k) particles, O(100k) hits

Limitations of conventional algorithms

100 T

e Conventional algorithms have = = . SRl
) :: 9 0 = _Re:::lstructllon ole;O; 73!;;: da;:,fﬁ = 1E;§V =
trouble scaling to dense S E onintel Xeon- CPUES2630v8 :
H > 80 low-u reference runs 10862 luminosity blocks =
environ ment g E () high}ju run 335302 463 luminosity blocks E 102
o Tracking takes ~40% of total é 0E E
event reconstruction time § 60 =
o Cannot be easily ported to <~ 50F =
parallel devices sulch as GPUs 402_ - _i 10
e (Call for novel solutions 30E- R k=
o Such as deep learning methods: 205_ -
ExaTrkX - e =
10 ATLAS Preliminary — ’

[W A A T I Lol L) I Ll 1 1 I Lo) I Jelig JEs) l Ll 1 1 l e e | l A R A I Ll L L
q 20 30 40 50 60 70 80 90 100
(n)

o

luminosity block count

https://exatrkx.github.io/

TrackML Challenges

e TrackML challenge dataset
o https://lwww.kaggle.com/c/trackmi-
particle-identification

e Detector is highly segmented and
the data size is dynamic

e The detector is emerged in a
magnetic field, charged particles
leave a trajectory in the detector

e The objective of machine learning
is to reconstruct those trajectories

S
l’ o \

r [mm]

1000 [—
—| 16 17 18
800 —
600 [—
400 -+ 12 13 14
200 —
B 7 2 | | | ” 9
0 | | Sye— L |
3000 2000 1000 1000 2000 3000
[mm]
L[}]
1000 o °
400
© 2 e o
800 ° ° ° °
L] [
. $
e 00 o ° 0 = Se ®e
600 ° J
° o o * e’ o
® oo > —200 ® o L
LI
e oo [) e e
e o o ° ® %
200 o ®o 600 . oo
. ®om o®
-..~ .-o- ‘00 -800
°
1000 2000 3000

—3000 -2000 —1000 0
z

—1000 -800 -600 —400 -200 O
X

200 400 600

https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification

Conventional algorithm

e Recursive and branching nature makes it
difficult to run the conventional alg. in
highly paralleled devices (such as GPUs)

Cluster finding

1

3D space point formation

l

Seed finding

1

Track finding

l

Ambiguity resolution

Conventional algorithm

e recursive and branching nature makes it
difficult to run the conventional alg. in
highly paralleled devices (such as GPUs)

Cluster finding

1

3D space point formation

I
)

Seed finding Most
) computational
Track finding expensive part

l

y

Ambiguity resolution

The ExaTrkX solution

e Challenges
o Too many tracks (10,000) and dynamic number of
tracks in each event
o Each hit has high-dimensional features (>=3D)

e ExaTrkX Solution

o Data abstraction

— point cloud (a set of data points in the measured
space)
o Objective of ML

— learn local relational information between two hits

1000 1

800+

600 A

400 A

200

04

® o» o®
‘% &

—3000

—2000

~1000 0
z

1000

2000

3000

ExaTrkX pipeline

oanp L2AT

Charline Rougier, CTD 2022

e Proof of principle by Exa.TrkX project Method applied to TrackML data by

Exa.TrkX and L2IT project

Metric 0 Graph Neural -, B onnected .
Learning .'{1%% ﬁ Network o'“&% % Components L /
" A 3 ? o o 2
Module P : ki j cConnecteg: mn °N
omponents o)
Map + Walkthrough

Hits Graph Edge Scores Track Candidates

Graph Edge Graph
Construction Labeling Segmentation

https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1051/epjconf/202125103047
https://indico.cern.ch/event/1103637/contributions/4821831/attachments/2453859/4205351/CTD_2022_CR_v2.pdf

Hits

|

Metric
Learning

or

Module
Map

Graph
Construction

Graph presentation of tracking data

e Node =1 space-point
e Edge = connection between two nodes.

NS 7
NKSOY
IS

O(300k) space-points in an event

=> fully connected graph (1019) edges
=> Comprises unphysical connections

Example with 19 hits in the (z,r) plane

How de we choose the connections between nodes? ”

Graph creation: learning connections (two methods)
Metric Learning Module Map

Given a s_ou_rce noqe' edges between this node and all Edges are created following the connections of the Module
nodes within a radius R from the source are created. Map.

N-dimensional space

Edges created 3
learned by the MLP g
1 —> 2 — 3 rreereessesssesseeses >
° 25355 2
o ® ‘ 35556
6] SN TT— > [] 1
[] ®
o © &
Circle radius R

Direction “inside-out” are given to edges.

No particular meaning of direction. 1

Graph edge construction efficiency

e High efficiency is a necessity: an edge lost during the graph construction can’t
be retrieved later.

5 L | LI | L | LI | L | LI | I P | LI

m 5 1.04— ATLAS Simulation Prellmlnary —
© B = Ml ws A : 7

Embeddin g uq:J : s =14 TeV, tf, (1) = 200, primaries (tf and soft interactions) P> 1 GeV :

g 1 02 [=8 Module Map __

- | == Metric Learning _

Similarity Hinge g L _

Search Loss = 1= —

[)] o008

= ﬂ::‘ - i

8 - anhe - '#.;_._gm H

L 0 _._-.-.".'“-.-".. - -

o (0] 0.98— oy oooe Tihgge |
Filtering S °L % - v, .
Cross () = e T < i

Entropy —+— GNN e s o0 -® i

Loss % 0.96— —

S ke, -

(O] n i

O 94 C] T A | | L 111 | I 1 | T | | I -1 | {] I | I | L 111 i
54 8 2 - B 1 2 3 4

n

Yy

/

~ Graph Neural
Network

k
€02
v§tt = p(eg;,

Edge
Labeling

Uj » Vo

Edge Scores

13

Graph Neural Network

e GNN normally composed with node,

edge and graph network

o Node / Edge network can be MLPs, Recurrent
Neural Networks, or Convolutional Neural
Networks when node is an image

e Message passing: unique component of
GNN

o allows node and edge exchange information to
learn sophisticated hidden features

400 1

200 1

> —200 1

~400+

—600+

—800+1

Assign edge scores

—1000 —800 —600 —400 —200 O 200 400 600
X

14

Edge classifier

Three major components:

Encoder
— map input graph to a hidden space

Graph Module

— interaction network

— perform N steps of message passing
through the graph, N=8

Output Module
— make edge predictions

15

Edge classifier

Three major components:

Encoder
— map input graph to a hidden space

Graph Module

— interaction network

— perform N steps of message passing
through the graph, N=8

b i

Intermediate edge predictions are also added to

Output Module the loss function.

— make edge predictions
16

Effect of message passing

10°

10°

104+

1034

1.0

0.84

0.64

0.4

0.2

0.0

ROC curve, AUC = 0.9869

ROC curve, AUC = 0.9869

[fake
[true

1.0

True positive rate
o o o
» o oo

o
N

o
=)

s

0.0

0.2 0.4 0.6 0.8
Model output

1.0

0.0

0.2 0.4 0.6 0.8 1.0
False positive rate

Efficiency

0.0

0.2 0.4 0.6 0.8
Cut on model score

1.0

0.2

0.4 0.6 0.8 1.0
Purity

e Changes in AUC for each
step: 0.9869 — 0.9972 —
0.9991 — 0.9995 — 0.9997
— 0.9997 ...

e By recursively updating node
and edge features, the GNN
model improves its edge
predictions

17

Input to GNN

e Average graph size: .IIIII“'“
o number of nodes: 90,000 C le6

o number of edges: 1,500,000 edge purity: 7.30+0.00 %
e Using 8500 training events to train *#7 filtering all
the GNN 2.00
o each epoch takes about 70 minutes gus_
running on NVIDIA GPU A100 5
o Takes more than one day to converge a é 1.50
good result &
e The memory consumption reaches y
the limitation of A100.
0.75

T T T T T T
70000 80000 90000 100000 110000 120000
number of nodes

0.90 o
@ oss 0.88
0.89
i .92
oot 0.92
0.95 b 02 0.92
. L
0.92 S
Y5en 0.85
0. os
. o 78
ey o 82
o oa 0% ?
‘ Tlors

Edge Scores

~ 8

Connected
Components

or

Connected
Components
+ Walkthrough

Graph
Segmentation

Track Candidates

19

Track labeling

400 A

200+

> —200 1

—400+

—600+

—800 1

Each edge assigned
with a score by GNN

—-1000 —800 —600 —400 -200 O 200 400 600
X

The output of GNN is weighted graph
Apply DBScan to form track candidates
Or traditional graph algorithm
cuGRAPH: weakly connected
components

The two give very similar results.

o The lateris 1 ~ 2 orders of magnitude faster
than the former.

20

https://scikit-learn.org/stable/modules/generated/sklea%20rn.cluster.DBSCAN.html
https://github.com/rapidsai/cugraph

Tracking Performance

Particles

200000 1

150000 1

100000 1

50000 1

[Selected

[Reconstructable

[Matched

: . v +
2 3 4 5
pT [GeV]

Track efficiency

1.00 1

0.95 1

0.90+

It
0
o

b
0o
o

o
~
v

o
~
I=

0.60 1

0.551

0.50 =

49 Physics Eff
4 Technical Eff

1 2 3 4 5
pT [GeV]

21

Accelerating the ExaTrkX pipeline

arxiv:2202.06929

e Total time is reduced from 15 seconds to 0.7 seconds
e Optimization of the pipeline on GPUs

o O O O

FAISS library for nearest neighbor search

cuGraph, GPU implementation of connected components

AMP, automatic mixed precision
FRNN, fixed radius nearest neighbor

Baseline Faiss cuGraph AMP FRNN
Data Loading 0.0022 & 0.0003 0.0021 & 0.0003 0.0023 £ 0.0003 0.0022 £ 0.0003 0.0022 £ 0.0003
Embedding 0.02 + 0.003 0.02 +0.003 0.02 £ 0.003 0.0067 £ 0.0007 0.0067 £ 0.0007
Build Edges 12 £2.64 0.54 +0.07 0.53 £0.07 0.53 £0.07 0.04 £0.01
Filtering 0.7+0.15 0.7+0.15 0.7£0.15 0.37 £ 0.08 0.37£0.08
GNN 0.17 +£0.03 0.17 £0.03 0.17 £0.03 0.17 £0.03 0.17£0.03
Labeling 22403 2.1+0.3 0.11+0.01 0.09 £ 0.008 0.09 £ 0.008
Total time 15£3. 3.6 0.6 1.6£0.3 1.24+0.2 0.7£0.1

Total time (s)

3.251

3.00+

2.754 w’f‘o'

2.501 ij‘
2.251 %

2.00+
1.754

1.504

1.251

Number of spacepoints

Track Candidates

4

Athena

Standard
ATLAS software

x? fit
accounting for expected
multiple scattering effects

ATLAS track candidates
with track parameter
(e, 6, ¢, do, 20)

23

Tracking efficiency

» Competitive “physics” efficiency
(excluding electrons)

Efficiency

1.4 e
19F ATLAS Simulation Preliminary e CKFtrack finding -|
r {s=14 TeV, tf, <u>=200, p,>2GeV GNN track finding 1
. ITk layout: 23-00-03 4
C NP S oy ==]
08 - R e
0.6 —
0.4 —
0.2 New
O_“"‘“"“““‘“'““l“‘"““"“”““"”_

Efficiency

H. Torres CTD 2023

GNN4ITk, L2IT

[O(10-3) fake tracks:

Track candidates not matched to any particle]

L o e B
4 of ATLAS Simulation Preliminary « CKF track finting |
: r {s=14 TeV, tf, <u>=200, p>2GeV GNN track finding 1
| ITk layout: 23-00-03 4
0.8 ‘ -
0.6 —
0.4 —
0.2 New
o: PR S AN A TS S S NS ST ST S NS |]

0 10 20 30 40 50
p; [GeV]

24

https://indico.cern.ch/event/1252748/contributions/5576737/attachments/2731045/4747598/CTD23-GNN4ITk-HTorres.pdf

arxiv:2203.08800

Large Radius Tracking with GNN

e ExaTlrkX is able to reconstruct orompt and displaced tracks at the same time.

400 -~ Heavy Neutral Lepton: pana=awan s S]
300 ' - ~ : —+
0.8
2004
100{ - é‘
< £0.6
£ _ g
E 0 =
1001 LY S 0.41
—2001 ~ ™*
-300{ 0.2
A s L s 4+ Prompt
e A I T T e + Displaced
=400 <200 0 200 %00 007550 100 150 200 250 300

X [mm] 25

Production vertex radius [mm]

Acceleration for Tracking

e The use of co-processor (GPU, FPGA) can potentially to
accelerate latency

e Heterogeneous computing workflow required additional care
to improve throughput

How can we enhance the scalability of the tracking workflow
and make the integration much easier?

26

ExaTrkX track finding pipeline

{eij} {éij} {eij €(0,1)}

Embedding 3
and Edge filter > GNN _) Connected E—
Fixed-radius NN edges pruned classified components track
edges edges candidates
{(.I'_y_:),-} {(.l‘.[/.,:);} {(}
: T, Ys2)i
T {(cell features), } T {(cell features); } T
|
3 Preprocessing
TrackML

dataset

Integration into production framework

Event
Generator/ Digitization
Fast Sim

Spacepoint
Formation

Track Track
Performance Fitting

e Use the ExaTrkX pipeline for Track finding

e |Integrated into the A Common Tracking Software (ACTS)

Track
Finding

Initial track
parameter
estimation

28

https://acts.readthedocs.io/en/latest/

Combinatoric KalmanFilter vs ExaTrkX B. Huth CTD 2023

e Integrating into ACTS allows us to

Time comparison compare ExaTrkX pipeline with the
s Exa TrkX existing algorithms
I P Esti i o . .
it - Peiepiaane e A preliminary computing time
BER Sceding comparison between conventional
2.0 B Combinatorial Kalman Filter

algorithms (CKF) and the ExaTrkX

e ExaTrkX was run in GPUs, while CKF
in CPUs

e A GPU-version of ACTS is under
development [traccc]. Would be
interesting to compare ExaTrkX with
the GPU version.

Exa.TrkX CKF Truth CKF Truth Tracking

https://indico.cern.ch/event/1252748/contributions/5521546/attachments/2732718/4751067/slides_cdt_2023.pdf

ExaTrkX as a service

e Run the ExaTrkX track finding algorithm as a server
e Clients send requests to the server in order to get track candidates
e Standalone implementation: https://github.com/exatrkx/exatrxk-cpp-ctd2022

Track reconstruction (Client) ExaTrkX (Server)

Event
Generator/ Digitization
Fast Sim

Track
Performance

Spacepoint

Formation Spacepoints

ExaTrkX Track

TrackFinding
Client

Finding Server

Initial track Track candidates !

parameter
estimation

30

https://github.com/exatrkx/exatrxk-cpp-ctd2022

GNNs for Particle-Tracking on FPGAs Front. Big Data 5828666 (2022)

e Throughput-optimized: small graphs (28 nodes, 56 edges), < 1us latency
e Resource-optimized: large graphs (1344 nodes with 2688 edges), 6 us latency

Training

' with
"‘ PyTorch
< Geometric " h I 4 I

] Vivado backend

Serialized \ PyG-to-HLS
model — model /, Project writer R
(model . pt file) converter i ’
nnet_utils \

C synthesis,
Conflguratlon ptlmlzers
precision, e factor, merge layers,
strategy clone arr. ys

Logic synthesis,
IP export

& XILINX. -

Summary

e GNN-based track reconstruction with simulated data are promising and

realistic.
o TrackML proof of principle, GNN4ITk provides competitive performance

e Prospect from active development
o Full Integration to ACTS
o Fair comparison to CKF GPU
o Optimized latency and throughput through hardware-algorithm co-development and ML-aaS
heterogenous computing

32

Backup

33

GRAFHCORE

An Open Collaboration

ML4Pions TrackML
NuML

m LmH o Q DeepMind

Labs

Princeton

21T UChicago

SPRACE

Youngstown

Krakow Cincinnati

—
\ EXRASCALE
() COMPUTING
\ PROJECT
Lozt

CalTech, FNAL, Tsing Hua
Exalearn

ulucC LBNL

UWashington Northwestern

FastML Lab

panda

Uppsala

ATLAS [CMS

EXPERIMENT : *Fermilab ‘?RAPIDS/
) BE »
| LAFTPC QNe

49

34

Heterogeneous Computing

The most straightforward way to deploy algorithms
on coprocessors is to run on machines with
coprocessors

However, Direct connection can be inefficient
and expensive at scale

Traditional direct CPU->GPU connection:

\ S

Too few models or cores = Narrow “sweet spot” in Too many models or cores
underutilized GPU ~ terms of models or cores = oversaturated GPU

—

Direct connection

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

36

As a Service Computing

Alternate coprocessor deployment
scheme where coprocessor-enabled
machines host an inference server and
remote jobs send inference requests via
network connection

* The servers do not necessarily need to be remote;
they can be just next to the client machine.

Model A

gRPC/network
Model B

COPROCESSOR
(GPU,FPGA,ASIC)

COPROCESSOR
(GPU,FPGA,ASIC)

Clients

Servers®

As a Service Computing

Model A

gRPC/network

. Model B
Inference as a Service:
- COPROCESSOR
(GPU,FPGA,ASIC)
Adjust the number of GPUs per
client-CPU core to get as close to the e
“sweet spot” as possible

Clients Servers

Direct As a Service Computing

Pros: Pros:
- Already have working example e Factorized out the underlying backend
implementation
Cons: : : :
e More straightforward to integrate with the
- Can be an inefficient use of resources production framework (e.g. Athena)
- Expensive e Independent of the underlying technology
- Machines without GPUs/FPGAs can'’t choices and algorithms
benefit from coprocessors e Better scalability and resource utilization

(Reduce cost)
Cons:

- Adds complexity 39

https://arxiv.org/pdf/2004.04334.pdf

ACTS with GNN (ExaTraX) Plugin (Direct inference)

ACTS

ExaTrk TorchScript implementation done by

measurements

tracks

Benjamin Huth

TrackFinding (ExaTrk) can run locally with
CPU/GPU

ACTS TrkFitting still run only on CPU

43

https://github.com/acts-project/acts/tree/main/Plugins/ExaTrkX

Integration of the ExaTrkX-as-a-service to ACTS

Client added in ACTS to communicate with Server

ACTS
Users can swap between direct or triton inference easily

__

measurements

)'/

/" 1gRPC/Network

¥

i spacepoinl‘t

i proto trks i

Serving GNN tracking Algo

tracks

We can offload more algorithm to coprocessor to increase the throughput 44

Premimary inference timing studies

Direct GPU : 1.6 s Avg inference time per events
15 [0 CKF
As-a-service GPU: ~5.8 s GNN tracking W Seed
- A N B KF
. . I TrackParamsEstimation
- Some overhead in movingto z B B
as_a_sewlce g B SpacePointMaker
- Implementation not fully s s
optimized
- 1/O, copying between host & 0

As-a-service Direct GPU Direct CPU Standard
device...etc GPU CKF

ttbar PU200 with OpenDataDetector

45

