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Tracking Challenges in HL-LHC

● Track reconstruction presents a 
challenging pattern recognition 
problem at the High Luminosity 
Large Hadron Collider (HL-LHC) 

○ In High Luminosity LHC, <μ> ~ 200
○ O (10k) particles, O(100k) hits

2



Limitations of conventional algorithms

● Conventional algorithms have 
trouble scaling to dense 
environment

○ Tracking takes ~40% of total 
event reconstruction time 

○ Cannot be easily ported to 
parallel devices such as GPUs

● Call for novel solutions 
○ Such as deep learning methods: 

ExaTrkX
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https://exatrkx.github.io/


TrackML Challenges

● TrackML challenge dataset
○ https://www.kaggle.com/c/trackml-

particle-identification
● Detector is highly segmented and 

the data size is dynamic
● The detector is emerged in a 

magnetic field, charged particles 
leave a trajectory in the detector 

● The objective of machine learning 
is to reconstruct those trajectories

4

https://www.kaggle.com/c/trackml-particle-identification
https://www.kaggle.com/c/trackml-particle-identification


Conventional algorithm

● Recursive and branching nature makes it 
difficult to run the conventional alg. in 
highly paralleled devices (such as GPUs)

5



Conventional algorithm

● recursive and branching nature makes it 
difficult to run the conventional alg. in 
highly paralleled devices (such as GPUs)
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Most 
computational 
expensive part



The ExaTrkX solution

● Challenges
○ Too many tracks (10,000) and dynamic number of 

tracks in each event
○ Each hit has high-dimensional features (>=3D) 

● ExaTrkX Solution
○ Data abstraction 

→ point cloud (a set of data points in the measured 
space)
○ Objective of ML 

→ learn local relational information between two hits
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ExaTrkX pipeline

● Proof of principle by Exa.TrkX project Method applied to TrackML data by 
Exa.TrkX and L2IT project
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Charline Rougier, CTD 2022

https://doi.org/10.1140/epjc/s10052-021-09675-8
https://doi.org/10.1051/epjconf/202125103047
https://indico.cern.ch/event/1103637/contributions/4821831/attachments/2453859/4205351/CTD_2022_CR_v2.pdf
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Graph presentation of tracking data

● Node = 1 space-point 
● Edge = connection between two nodes.
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Example with 19 hits in the (z,r) plane

O(300k) space-points in an event
=> fully connected graph (1010) edges 
=> Comprises unphysical connections

How de we choose the connections between nodes?



Graph creation: learning connections (two methods)
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Graph edge construction efficiency

● High efficiency is a necessity: an edge lost during the graph construction can’t 
be retrieved later.
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Graph Neural Network

● GNN normally composed with node, 
edge and graph network 

○ Node / Edge network can be MLPs, Recurrent 
Neural Networks, or Convolutional Neural 
Networks when node is an image

● Message passing: unique component of 
GNN

○ allows node and edge exchange information to 
learn sophisticated hidden features
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Assign edge scores



Edge classifier
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Edge classifier
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Effect of message passing

● Changes in AUC for each 
step: 0.9869 → 0.9972 → 
0.9991 → 0.9995 → 0.9997 
→ 0.9997 … 

● By recursively updating node 
and edge features, the GNN 
model improves its edge 
predictions
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Input to GNN

● Average graph size: 
○ number of nodes: 90,000
○ number of edges: 1,500,000 

● Using 8500 training events to train 
the GNN

○ each epoch takes about 70 minutes 
running on NVIDIA GPU A100 

○ Takes more than one day to converge a 
good result 

● The memory consumption reaches 
the limitation of A100.
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Track labeling

● The output of GNN is weighted graph 
● Apply DBScan to form track candidates 
● Or traditional graph algorithm 

cuGRAPH: weakly connected 
components 

● The two give very similar results. 
○ The later is 1 ~ 2 orders of magnitude faster 

than the former.
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Each edge assigned 
with a score by GNN

https://scikit-learn.org/stable/modules/generated/sklea%20rn.cluster.DBSCAN.html
https://github.com/rapidsai/cugraph


Tracking Performance
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Accelerating the ExaTrkX pipeline

● Total time is reduced from 15 seconds to 0.7 seconds 
● Optimization of the pipeline on GPUs

○ FAISS library for nearest neighbor search
○ cuGraph, GPU implementation of connected components
○ AMP, automatic mixed precision
○ FRNN, fixed radius nearest neighbor
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arxiv:2202.06929
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Tracking efficiency
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H. Torres CTD 2023

GNN4ITk, L2IT

https://indico.cern.ch/event/1252748/contributions/5576737/attachments/2731045/4747598/CTD23-GNN4ITk-HTorres.pdf


Large Radius Tracking with GNN

● ExaTrkX is able to reconstruct prompt and displaced tracks at the same time.
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arxiv:2203.08800

Heavy Neutral Lepton



Acceleration for Tracking 

● The use of co-processor (GPU, FPGA) can potentially to
accelerate latency

● Heterogeneous computing workflow required additional care 
to improve throughput

How can we enhance the scalability of the tracking workflow 
and make the integration much easier?
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ExaTrkX track finding pipeline
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Integration into production framework

● Use the ExaTrkX pipeline for Track finding 
● Integrated into the A Common Tracking Software (ACTS)
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https://acts.readthedocs.io/en/latest/


Combinatoric KalmanFilter vs ExaTrkX

● Integrating into ACTS allows us to 
compare ExaTrkX pipeline with the 
existing algorithms 

● A preliminary computing time 
comparison between conventional 
algorithms (CKF) and the ExaTrkX

● ExaTrkX was run in GPUs, while CKF 
in CPUs

● A GPU-version of ACTS is under 
development [traccc]. Would be 
interesting to compare ExaTrkX with 
the GPU version.
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B. Huth CTD 2023

https://indico.cern.ch/event/1252748/contributions/5521546/attachments/2732718/4751067/slides_cdt_2023.pdf


ExaTrkX as a service

● Run the ExaTrkX track finding algorithm as a server 
● Clients send requests to the server in order to get track candidates 
● Standalone implementation: https://github.com/exatrkx/exatrxk-cpp-ctd2022
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https://github.com/exatrkx/exatrxk-cpp-ctd2022


GNNs for Particle-Tracking on FPGAs

● Throughput-optimized: small graphs (28 nodes, 56 edges), < 1us latency
● Resource-optimized: large graphs (1344 nodes with 2688 edges), 6 us latency 
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Front. Big Data 5:828666 (2022)



Summary

● GNN-based track reconstruction with simulated data are promising and 
realistic.

○ TrackML proof of principle, GNN4ITk provides competitive performance

● Prospect from active development
○ Full Integration to ACTS
○ Fair comparison to CKF GPU 
○ Optimized latency and throughput through hardware-algorithm co-development and ML-aaS

heterogenous computing 
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Backup
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Heterogeneous Computing 

The most straightforward way to deploy algorithms 
on coprocessors is to run on machines with 
coprocessors 

However, Direct connection can be inefficient 
and expensive at scale 

Direct connection
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PCIe



As a Service Computing 

Alternate coprocessor deployment 
scheme where coprocessor-enabled 
machines host an inference server and 
remote jobs send inference requests via 
network connection

gRPC/network

Clients Servers* 37* The servers do not necessarily need to be remote; 
they can be just next to the client machine.



As a Service Computing 

gRPC/network

Clients Servers 38



Pros:

● Factorized out the underlying backend 
implementation 

● More straightforward to integrate with the 
production framework (e.g. Athena) 

● Independent of the underlying technology 
choices and algorithms 

● Better scalability and resource utilization 
(Reduce cost)

Cons:

- Adds complexity 39

Direct As a Service Computing

Pros:

- Already have working example

Cons:

- Can be an inefficient use of resources
- Expensive
- Machines without GPUs/FPGAs can’t 

benefit from coprocessors

https://arxiv.org/pdf/2004.04334.pdf


ACTS with GNN (ExaTraX) Plugin (Direct inference)

ExaTrk TorchScript implementation done by 
Benjamin Huth

TrackFinding (ExaTrk) can run locally with 
CPU/GPU

ACTS TrkFitting still run only on CPU

SpaceMaker/Alg

ExaTrk/Alg

TrkFitting/Alg

ACTS

measurements 

tracks
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https://github.com/acts-project/acts/tree/main/Plugins/ExaTrkX


Integration of the ExaTrkX-as-a-service to ACTS

SpaceMaker/Alg

ExaTrkTritonClient/Alg

TrkFitting/Alg

ACTS

measurements 

tracks

Client added in ACTS to communicate with Server

Server with 
coprocessor
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Users can swap between direct or triton inference easily 

Client

gRPC/Network

Server

Serving GNN tracking Algo

proto trks

spacepoint

We can offload more algorithm to coprocessor to increase the throughput 



Premimary inference timing studies 

Direct GPU : 1.6 s

As-a-service GPU: ~5.8 s

- Some overhead in moving to 
as-a-service. 

- Implementation not fully 
optimized

- I/O, copying between host & 

device…etc  

GNN tracking
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ttbar PU200 with OpenDataDetector


