

1

Radiation Hard SiPM Development for CEPC

Tianyuan Zhang, Mengzhao Li, Lei Cao, Mei Zhao, Zhijun Liang,

Institute of High Energy physics, CAS

2024/01/17 Hong Kong

- Background of SiPM
- SiPM simulation and design
- SiPM samples and weak light tests
- SiPM neutron irradiation experiment and analysis
- Introduction to SPAD and preliminary experiments
- Summary

- Composed of a single photon avalanche diode (SPAD) array in ٠ parallel
- Working above avalanche break voltage, with avalanche quenching • mechanism
- **Excellent photon number resolution and high single photon** • detection sensitivity

SiPM(Silicon Photomultiplier)

Equivalent circuit of SiPM

222

SPAD

Typical waveform of SiPM

The application of radiation hard SiPM

CEPC calorimeter, Space station scientific experiment (Herd ...)

CMS Barrel Timing Detector

CMS-ECAL upgrade

GECAM

The requirements for radiation hard SiPM

After $10^{10} n_{eq}/cm^2$ or 10Krad dose

- Signal gain decrease
- Energy resolution decrease
- Dark count increase

Urgent requirement 1: excellent radiation resistance

Urgent requirement 2: Low dark count

	Long term Satellite or	CEPC
	Space station application	requirement
TID does	100 krad	>100 krad
Fluence	~10 ¹⁰ n _{eq} /cm ²	>10 ¹³ n _{eq} /cm ²

Fluence [neg/mm]

IHEP SiPM-V0

Fraction of active area, typically 50-70%

SiPM sample produced along with LGAD pre-production

- Pixel size : 50µm
- 16 x 16 pixels

Weak light experiment and TCAD simulation of SiPM

- The structural design and some processes of SiPM have been validated.
- Energy resolution needs to be optimized.

Optimize the Pstop and GR structures through simulation to reduce the leakage current of the edge Pstop;

TCAD simulation of radiation hard SiPM

Neutron irradiation of SiPM-V0 in collaboration with CSNS

- Under the same irradiation conditions, SiPM is compared to the Hamamatsu S13360 series. At operating voltage, the leakage current of S13360 is 0.2778μ A/cm², the leakage current of SiPM is $0.1094 \mu A/cm^2$.
- When the irradiation dose reaches $2.17 \times 10^{10} n_{eq}/cm^2$, the break voltage of SiPM maintains, and the leakage current remains basically unchanged(0.1nA);
- When the irradiation dose reaches $1.09 \times 10^{10} n_{eq}/cm^2$, the break voltage of SiPM decreases by 5V and the leakage current remains basically unchanged(0.2nA).

SiPM Test Plan

- Performance test plan: • Existing single photon testing platforms and low-temperature testing platforms
 - Irradiation test plan: •

Plan to collaborate with the Dongguan spallation team to conduct proton irradiation of SiPM

Readout

Single photon testing platform (based on picosecond lasers)

Time line for radiation hard SiPM

9

- 2023 1st half: SiPM irradiation hard design validated in LGAD engineering run
- 2023 2nd half: 1st Dedicated SiPM engineering run submission
- 2024: 1~2 more dedicated SiPM engineering run ||Attempt multiple laminations to ultimately determine SiPM process parameters and radiation resistance performance

2024

2025: more dedicated SiPM engineering run ||Further optimization for specific projects

Simulation and exploration of various process parameters

2025

Background of SPAD R&D

Introduction and Application of SPAD

Spad Parameter:

Size of photosensitive area: 12.816mm×9.856mm Number of pixels: 260 × 200 Pixel Size: 49.28µm × 49.17µm

Advantage:

- Adopting high sensitivity SPAD sensors with single photon detection capability;
- High dynamic range, up to 156dB.

Application:

- Radiation imaging
- Weak light imaging
- Fluorescence analysis
- High speed imaging
- Medical equipment

Test Setup

Dark Box

Lens group:

Energy loss efficiency: 30%, 4π solid angle loss rate: 98% Reduce image size by 2 times

Resolution plate test

Visible light source-Metal resolution plate-Lens group-spad

х Visible light source-Optical resolution plate-Lens group-spad

Thickness: 0.1mm

resolution ratio: 300um 100um 50um 200um 250um

Scintillator+SPAD Preliminary test results (lensless) Exposure Time: 1e7us, Am²⁴¹ Exposure Time: 1e7us, Sr⁹⁰ **Plastic Scintillator** y=100 thickness: 0.5cm ounts > 100 У **GAGG crystal** y=170 ss: 60um counts > 10

Summary

- Aim for CEPC and Astrophysics application
- Key technology has been validated in ATLAS HGTD detector project
 - Radiation hard LGAD sensor developed by IHEP team
 - At operating voltage, SiPM has a smaller leakage current compared to the Hamamatsu S13360 series.
- Radiation SiPM R & D project
 - Formal tape-out plan will be submitted in this month
 - Dedicated engineering run by the end of this year
- SPAD Preliminary test results
 - Imaging position resolution ~ 100μm

Thanks for Your Attention

tyzhang@ihep.ac.cn