FCC-hh Detector: requirements and concept

Michele Selvaggi

CERN

Credit: Martin Aleksa, Werner Riegler

Philosophy

- Goal of this talk is to walk you through the process that we went through in the CDR process in trying to design a multi-purpose detector for the FCC-hh 100 TeV collider
- Guiding principles are machine constraints and physics requirements
- This generic detector serves as a starting point for:
 - benchmarking physics reach of the machine
 - identify:
 - challenges of building such an experiment
 - topics where R&D needed
- Most likely, this is not "THE OPTIMAL" detector. Maybe the optimal route will be to have several detectors optimized for specific signatures.
- Also, expected improvements in technology may lead to more ambitious and less-conventional approaches of detector concepts in the future
- Although this discussion will be based on the 100 TeV FCC-hh collider most of the challenges are common to any high energy/high luminosity project.

Physics goals for a 100 TeV collider

- Ultimate discovery machine
 - directly probe new physics up to un-precendented scale
 - discover/exclude:
 - heavy resonances "strong" $m(q^*)$ ≈ 50 TeV,"weak"m(Z')≈ 40TeV,- SUSYm(gluino)≈ 15 TeV,m(stop).≈ 10 TeV

Physics goals for a 100 TeV collider

- Ultimate discovery machine
 - directly probe new physics up to unprecendented scale
 - discover/exclude:

- Precision machine (Higgs)
 - probe Higgs self-coupling to few % level
 - %-level precision for 3rd generation (top yukawa)
 - and 2nd generation (µµ, cc)
 - exploit complementarity with e⁺e⁻ by probing high dim.operators (EFT) in extreme kinematic regimes (boosted)

Physics program spans over very wide range of energy scales !

SM physics processes@ 100 TeV

Total pp cross-section and Minimum bias multiplicity show a modest increase from 14 TeV to 100 TeV

 \rightarrow Levels of pile-up will scale basically as the instantaneous luminosity.

Cross-section for relevant processes shows a significant increase.

→ interesting physics sticks out more !

Rate of increase from 14 TeV to 100 TeV:

- ggH x15
- HH x40
- ttH x55

reduction of x10-20 statistical uncertainties

• tt

SM physics @ 100 TeV

SM Physics is more forward @100TeV

 If we want to maintain high efficiency in states produced at threshold need large rapidity (with tracking) and low p_T coverage

→ highly challenging levels of radiation at large rapidities

FCC-hh Simulation

Tracking and calorimetry needed up to $|\eta| < 6$ for ~. VBF signatures

Higgs at high pT

Huge rates at large pT:

- > 10° Higgs produced with pT > 1 TeV rare decay modes can be accessed at large pT
- Opportunity to measure the Higgs in a new dynamical regime
- Higgs pT spectrum highly sensitive to new physics.

BR(H\rightarrowµµ) ~ O(I-2%) achievable up to PT = 200 GeV

Central Physics:

- less relative impact of PU
- smaller systematics

very forward coverage may not be needed here!

Physics contraints - high pT

• The boosted regime:

→ measure leptons, jets, photons, muons originating ~ 40-50 TeV resonances

Tracking:
$$\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}$$
 Calorimeters: $\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$

- Tracking target : $\sigma / p = 20\% @10 \text{ TeV}$
- Muons target: $\sigma / p = 10\%$ @20 TeV
- Calorimeters target: containment of $p_T = 20 \text{ TeV}$ jets

high p_T muons

Physics contraints - high pT

- The boosted regime:
 - → measure b-jets, taus from multi-TeV resonances
- Long-lived particles live longer:
 - ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV tau lepton travels 10 cm before decaying
 - \rightarrow extend pixel detector further?
 - useful also for exotic topologies (disappearing tracks and generic BSM Long-lived charged particles)
 - number of channels over large area can get too high
 - \rightarrow re-think reconstruction algorithms:
 - hard to reconstruct displaced vertices
 - exploit hit multiplicity discontinuity

Only 71% 5 TeV b-hadrons decay < 5th layer.

• displaced vertices

Physics contraints - high pT

• The boosted regime:

→ measure W, H, top jets from multi-TeV resonances

- Highly boosted hadronically decaying SM heavy states (W, Z, H or t) will have highly collimated decay products
- The ability to distinguish such boosted states from vanilla QCD jets is an essential tool in many searches for BSM (such as top partners, Z', etc ...)

ex: W(10 TeV) will have decay products separated by DR = 0.01 = 10 mrad

• need highly granular sub-detectors: • Tracker - pixel: 10 μ m @ 2cm $\rightarrow \sigma_{\eta x \varphi} \approx 5$ mrad • Calorimeters: 2 cm @ 2m $\rightarrow \sigma_{\eta x \varphi} \approx 10$ mrad

ſ	parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
	E_{cm}	TeV	14	14	27	100
	circumference	km	26.7	26.7	26.7	97.8
	peak $\mathcal{L} \times 10^{34}$	$cm^{-2}s^{-1}$	1	5	25	30
	bunch spacing	ns	25	25	25	25
	number of bunches		2808	2808	2808	10600
	goal $\int \mathcal{L}$	ab ⁻¹	0.3	3	10	30
ſ	σ_{inel}	mbarn	85	85	91	108
	σ_{tot}	mbarn	111	111	126	153
	BC rate	MHz	31.6	31.6	31.6	32.5
	peak pp collision rate	GHz	0.85	4.25	22.8	32.4
	peak av. PU events/BC		27	135	721	997
ſ	rms luminous region σ_z	mm	45	57	57	49
	line PU density	mm ⁻¹	0.2	0.9	5	8.1
	time PU density	ps^{-1}	0.1	0.28	1.51	2.43
	$dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
	charged tracks per collision N_{ch}		95	95	108	130
	Rate of charged tracks	GHz	76	380	2500	4160
	$< p_T >$	GeV/c	0.6	0.6	0.7	0.76
Number	of pp collisions	10^{16}	2.6	26	91	324
Charged	part. flux at 2.5 cm est.(FLUKA)	GHzcm^{-2}	0.1	0.7	2.7	8.4 (12)
1 MeV-neq fluence at 2.5 cm est.(FLUKA)		$10^{16}{ m cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
Total ionising dose at 2.5 cm est.(FLUKA)		MGy	1.3	13	54	270 (400)
$dE/d\eta _{\eta}$	=5	GeV	316	316	427	765
$\frac{dP}{d\eta}\Big _{\eta=5}$		kW	0.04	0.2	1.0	4.0

unit LHC HL-LHC HE-LHC FCC-hh parameter E_{cm} TeV 14 14 27100 circumference 26.726.726.7km 97.8 $\mathrm{cm}^{-2}\mathrm{s}^{-1}$ peak $\mathcal{L} \times 10^{34}$ $\mathbf{5}$ 2530 1 bunch spacing 25252525nsnumber of bunches 2808 2808 2808 10600 ab^{-1} goal $\int \mathcal{L}$ 0.33 103085 85 91 mbarn 108 σ_{inel} 111 mbarn 111 126153 σ_{tot} 31.6 31.6 BC rate MHz 31.6 32.5peak pp collision rate GHz 0.854.2522.832.4peak av. PU events/BC 27135721 997 455757rms luminous region σ_z 49 $\mathbf{m}\mathbf{m}$ \rm{mm}^{-1} line PU density 0.20.9 $\mathbf{5}$ 8.1time PU density 0.281.512.430.1 ps^{-1} $dN_{ch}/d\eta|_{n=0}$ 7 8 9.6 7 charged tracks per collision N_{ch} 9595 108130Rate of charged tracks GHz 76 380 25004160 GeV/c 0.60.60.70.76 $\langle p_T \rangle$ 10^{16} Number of pp collisions 2.6 26 91 324 $\mathrm{GHz}\,\mathrm{cm}^{-2}$ Charged part. flux at 2.5 cm est.(FLUKA) 0.7 2.7 0.1 8.4 (12) $10^{16}\,{\rm cm}^{-2}$ 1 MeV-neq fluence at 2.5 cm est.(FLUKA) 16.8 84.3 (60) 0.4 3.9 Total ionising dose at 2.5 cm est.(FLUKA) MGy 13 54 1.3 270 (400) $dE/d\eta|_{\eta=5}$ GeV 316 316 427 765

kW

 $dP/d\eta|_{n=5}$

→ x6 HL-LHC

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc FCC-hh: 1000 PU events/bc

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection

0.04

0.2

1.0

4.0

rad. levels

	parameter		unit	LHC	HL-LHC	HE-LHC	FCC-hh
	E_{cm}		TeV	14	14	27	100
	circumference		km	26.7	26.7	26.7	97.8
	peak $\mathcal{L} \times 10^{34}$	c	$m^{-2}s^{-1}$	1	5	25	30
	bunch spacing		ns	25	25	25	25
	number of bunches			2808	2808	2808	10600
	goal $\int \mathcal{L}$		ab ⁻¹	0.3	3	10	30
	σ_{inel}	1	mbarn	85	85	91	108
	σ_{tot}	1	mbarn	111	111	126	153
	BC rate		MHz	31.6	31.6	31.6	32.5
	peak pp collision rate		GHz	0.85	4.25	22.8	32.4
	peak av. PU events/BC			27	135	721	997
	rms luminous region σ_z		mm	45	57	57	49
	line PU density	1	mm^{-1}	0.2	0.9	5	8.1
	time PU density		ps^{-1}	0.1	0.28	1.51	2.43
	$dN_{ch}/d\eta _{\eta=0}$			7	7	8	9.6
	charged tracks per collision N_{ch}			95	95	108	130
	Rate of charged tracks		GHz	76	380	2500	4160
	$< p_T >$		GeV/c	0.6	0.6	0.7	0.76
Number	of pp collisions	1	0^{16}	2.6	26	91	324
Charged part. flux at 2.5 cm est.(FLUKA)		GHz	cm^{-2}	0.1	0.7	2.7	8.4 (12)
1 MeV-neq fluence at 2.5 cm est.(FLUKA)		10^{16}	cm^{-2}	0.4	3.9	16.8	84.3 (60)
Total ior	nising dose at 2.5 cm est.(FLUKA)	Μ	Gy	1.3	13	54	270 (400)
$dE/d\eta _{\eta}$	$\eta=5$	G	eV	316	316	427	765
$dP/d\eta _r$	g=5	k	W	0.04	0.2	1.0	4.0

→ x50 HL-LHC

10¹⁸ cm⁻² MeV-neq @ 2.5 cm !!

An FCC-hh detector

- Must be able to cope with:
 - very large dynamic range of signatures (E = 20 GeV 20 TeV)
 - hostile environment (1k pile-up and up to 10¹⁸ cm⁻² MeV neq fluence)
- Characteristics:
 - large acceptance (for low pT physics)
 - extreme granularity (for high p_T and pile-up rejection)
 - timing capabilities
 - radiation hardness

The FCC-hh detector

An FCC-hh detector that can do the job

Tracker

- -6 < η < 6 coverage, 20-40% total X/X₀
- pixel : $\sigma_{r\varphi} \sim 10 \mu m$, $\sigma_Z \sim 15-30 \mu m$, X/X₀(layer) ~ 0.5-1.5%
- outer : $\sigma_{r\varphi} \sim 10 \mu m$, $\sigma_Z \sim 30-100 \mu m$, X/X₀(layer) ~ 1.5-3%

Calorimeters

- ECAL: LArg , $30X_0$, 1.6 λ , r = 1.7-2.7 m (barrel)
- HCAL: Fe/Sci , 9 λ , r = 2.8 4.8 m (barrel)

Muon spectrometer

- Two stations separated by I-2 m
- 50 μm pos., 70μrad angular

Magnet

- central R = 5, L = 10 m, B = 4T
- forward R = 3m , L = 3m , B = 3.5T

Radiation tolerance

- A hadron fluence > 10^{16} cm⁻² is very challenging for silicon sensors
- This limit is reached already @ 27 cm from the beam pipe
- Dedicated R&D needed to push the limit of radiation hardness (LHCb Upgrade II)

Tracker

- Binary readout
- I6 billions readout channels, x(3-10) phase II detectors)
- Radiation hardness is an issue for innermost layers

- Tilted geometry with inclined modules:
 - minimize effect of Multiple scattering (low material)
 - helps with pattern recognition

low p_T muons \rightarrow resolution dominated by MS

Pile-up rejection

With PU density = 8 mm⁻¹ need $\delta z_0 \sim 100 \ \mu m$ resolution in track longitudinal impact parameter \rightarrow at large angles this corresponds to beam-pipe contribution alone !!!

High resolution (~ 5-10 ps) timing information needed !!

Tracking WIMPs

- Observed relic density of Dark Matter Higgsino-like: I TeV, Wino-like: 3TeV
 - Mass degeneracy: wino 170MeV, Higgsino 350MeV
- Wino/Higgsino LSP meta-stable chargino, cτ= 6cm(wino)
 7mm(higgsino)
- Useful tools to optimise detector concepts

Calorimeters

ECAL

- ECAL: LAr + Pb technology driven by radiation hardness
- HCAL:
 - Organic scintillator + Steel, R/O with WLS fiber + SiPM
 - LAr in the forward (Dose > 10 MGy)

• Design goals:

- High longitudinal (7+10 layers) + transverse segmentation (x4 CMS and ATLAS)
- Particle-flow compliant
- standalone PU rejection

FCC-hh Tile Barrel +Ext. Barrel

Photon resolution

•

•

•

•

•

FCC-hh Simulation (Geant4)

Hadron/Jet Performance with Full sim

- Excellent resolution up to pT = 10 TeV !!
- Large impact of PU at low pT (as expected)
 - crucial for low mass di-jet resonances (again, such as HH→bbγγ)
 - Further motivation for Particle-flow

→ since charged PU contribution can be easily subtracted (Charged Hadron Subtraction)

- Standalone muon measurement with angle of track exiting the coil
- Target muon resolution can be easily achieved with 50 μ m position resolution (combining with tracker)
- Good standalone resolution below $|\eta| < 2.5$
- Rates manageable with HL-LHC technology (sMDT)

Data rates and trigger

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
bb cross-section	mb	0.5	0.5	1	2.5
$b\overline{b}$ rate	MHz	5	25	250	750
bb $p_T^{\rm b} > 30 {\rm GeV/c}$ cross-section	μb	1.6	1.6	4.3	28
$b\overline{b} p_T^b > 30 \mathrm{GeV/c}$ rate	MHz	0.02	0.08	1	8
Jets $p_T^{jet} > 50 \text{GeV/c cross-section}$ [341]	μb	21	21	56	300
Jets $p_T^{jet} > 50 \text{GeV/c}$ rate	MHz	0.2	1.1	14	90

- ATLAS/CMS readout calorimeters/muons @40MHz and send via optical fibres to Level I trigger outside the cavern to create LI trigger decisions
- CMS reads out (part of) the tracker at LI 50 Tb/s
- Full detector readout @IMHz (5Mb/event)
 - @40MHz it would correspond to 200 Tb/s

- <u>FCC-hh:</u>
 - At FCC-hh Calo+Muon would correspond to 250 Tb/s (seems feasible)
 - However full detector would correspond to I-2 Pb/s
 - Seems hardly feasible (30 yrs from now)
 - How much data can be transferred out, without spoiling the performance?

The FCC-hh

CERN Yellov Monographs	v Reports: CERN-2022-002
	Conceptual design of an experiment at the FCC-hh, a future 100 TeV hadron collider
Editors: M. Mangano W. Riegler	
	CERN

Volume editors: M. Mangano, W. Riegler

Benchmark processes, detector requirements from physics *Editors:* H. Gray, C. Helsens, F. Moortgat, M. Selvaggi

Experiment, detector requirements from environment *Editors:* I. Besana, W. Riegler

Software Editors: C. Helsens, M. Selvaggi

Magnet systems *Editors:* H. Ten Kate, M. Mentink

Tracker *Editors:* Z. Drasal, E. Codina

Calorimetry Editors: M. Aleksa, A. Henriques, C. Neubuser, A. Zaborowska

Muons Editors: W. Riegler, K. Terashi

Physics performance for benchmark channels *Editors:* M. Mangano, C. Helsens, M. Selvaggi

Conceptual Design Report

Yellow Report (Extended CDR) in. 2022

Beyond the CDR: magnets?

Magnets often drive exp. cost

Initial Design

- B= 6T, R=6m, cost = 900 MCHF !!
 - (Too expensive, and not needed)

CDR Design

- B=4T, R=5m, cost = 300 MCHF
 - a la CMS
 - BUT no return (stray field concerning?)

Alternative Design

- Solenoid before ECAL,
 - return field through the HCAL
 - ATLAS without Toroid
 - B=4T, R=2m, cost 50 MHCF
 - only have muon ID
 - do we have enough selectivity with a track trigger at L1?

TO BE STUDIED, would reduce cost substantially

Road to 1% precision on the self-coupling ?

- Photons
 - energy/momentum resolution
 - Homogenous LXe calorimeter ?
 - $M_R \sim 5 \text{ cm}, X_0 \sim 2.5 \text{ cm}$
 - 3%/√E
 - Eff low misID
 - Pile-up rejection (~ 10 ps timing)
- (B-)jet energy momentum resolution
 - Intrinsic HCAL resolution,
 - Calorimeter segmentation for optimal particle-flow
 - Timing for pile-up rejection
- Flavor Tagging
 - Close to IP (radiation damage !!!) (I/d)
 - ~ @lcm \rightarrow lel9 | MeV neq/cm²
 - Light vertex detector $(\sqrt{X_0})$
 - but power/cooling needed to extract data
 - target single point resolution ~ 10 μm x 10 μm

δκ_λ (stat) ~ 2-3%

[MLM, Ortona, MS] [Taliercio et al.]

XENONnT:

maps ~ IeI5 I MeV neq/cm²

Strategy for R & D

- High profile R&d program needs to be carried on to make this possible, (leverage HL-LHC efforts)
- Possible Directions:
 - Radiation hard silicon detectors (IeI8 MeV neq/cm²)
 - High precision timing (< 10 ps)
 - Low power, high speed links (Silicon Photonics)
 - Highly segmented calorimeters (4D imaging calorimeters)
 - Software, reconstruction algorithms (4D particle-flow, boosted object tagging)

Conclusions

- A detector operating at 100 TeV collider must feature excellent performance in a wide energy range
- Physics (low and high Q²) and machine (1000PU, high rad levels and data rates) impose several constraints on the detector design
- A general purpose reference detector has been designed to set the scale of the challenges of performing experiments with such machine
- We think that detectors able to extract all the physics potential from such a machine can be built, but a high profile R&D programme for detectors and electronics technologies has to be conducted if we want to go beyond
 - radiation tolerance, picosecond timing, granularity, high speed low power optical links

Backup

Reach at high energies

How does the rate of a given process (e.g. single Higgs production) scale from 14 TeV to 100 TeV

$$\frac{\text{cross-section } (\sqrt{s2, M})}{\text{cross-section } (\sqrt{s1, M})} \approx L_1(M) / L_2(M) \approx (s_2 / s_1)^{a(M)}$$

	σ(27)/σ(14)	σ(100)/σ(14)
ggH	3	15
НН	4	40
ttH	5	55
Н (рт > I TeV)	7	400

Very large rate increase by increasing center of mass energy

NB: this improvement only comes from the cross-section (neglects integrated luminosity)

Reach @100TeV

 \mathscr{L} = integrated luminosity L = parton luminosity L ~ I/ τ^{a} , τ = x₁ x₂ = M²/s L ~ (s/M²)^a

 σ (part) ~ I/ M²

events = $\sigma \mathscr{L}$

 $\sigma \approx \sigma$ (part) L

$$\sigma \approx (s / M^{2+2/a})^a$$

Reach of collider at $\sqrt{s_1}$ vs $\sqrt{s_2}$:

 $(M_2 / M_1) \sim (s_2 / s_1)^{1/2} [(s_1/s_2)(\mathscr{L}_1/\mathscr{L}_2)]^{1/(2a+1)}$

At high mass (high x), a >> I:

Mass reach goes up by factor 7 (roughly)

H→invisible

- Measure it from H + X at large p_T(H)
- Fit the E_T^{miss} spectrum
- Constrain background p_T spectrum from $Z \rightarrow vv$ to the % level using NNLO QCD/EW to relate to measured Z,W and γ spectra (low stat)
- Estimate $Z \rightarrow vv$ ($W \rightarrow Iv$) from $Z \rightarrow ee/\mu\mu$ ($W \rightarrow Iv$) control regions (high stat).

Self-coupling at the FCC-hh

2004.03505 [hep-ph]

parameterisation	scenario I	scenario II	scenario III
b-jet ID eff.	82 - 65%	80-63%	78-60%
b-jet c mistag	15-3%	15-3%	15-3%
b-jet l mistag	1-0.1%	1 - 0.1%	1 - 0.1%
au-jet ID eff	80-70%	78-67%	75-65%
au-jet mistag (jet)	2-1%	2-1%	2-1%
τ -jet mistag (ele)	0.1-0.04%	0.1- $0.04%$	0.1-0.04%
γ ID eff.	90	90	90
jet $\rightarrow \gamma$ eff.	0.1	0.2	0.4
$m_{\gamma\gamma}$ resolution [GeV]	1.2	1.8	2.9
m_{bb} resolution [GeV]	10	15	20

	$HH \rightarrow b\bar{b}\gamma\gamma$	$HH \rightarrow b\bar{b}\tau\tau$	$HH \rightarrow 4b$	HH combination
Precision on the signal strength at 68% CL				
stat only	2.4	2.6	3.9	1.6
scen 0	3	3.4	4	2
scen 1	5.5	5.3	18.2	3.6
Precision on the k_{λ} at 68% CL%				
stat only	2.6	3.3	8	2
scen 0	3.1	4	9.4	2.4
scen 1	5.6	6.6	13.5	3.9

• Expected precision:

@68% CL	scenario I	scenario II	scenario III
bbyy	3.8	5.9	10.0
bbττ	9.8	12.2	13.8
bbbb	22.3	27.1	32.0
comb.	3.4	5.1	7.8

- Combined precision:
 - 3.5-8% for SM (3% stat. only)
 - 10-20% for $\lambda_3 = 1.5^* \lambda_3^{SM}$

35

[2203.08042]

Stray field and service cavern

Dipole vs. Solenoid

Table 7.2: Main characteristics of the central solenoid, a forward solenoid and a forward dipole magnet.

	Unit	Main solenoid	Forward solenoid	Forward dipole
Operating current	kA	30	30	16
Stored energy	GJ	12.5	0.43	0.20
Self-inductance	Н	27.9	0.96	1.54
Current density	A/mm^2	7.3	16.1	25.6
Peak field on conductor	Т	4.5	4.5	5.9
Operating temperature	K	4.5	4.5	4.5
Current sharing temp.	K	6.5	6.5	6.2
Temperature margin	K	2.0	2.0	1.7
Heat load cold mass	W	286	37	50
Heat load thermal shield	W	5140	843	1500
Cold mass	t	1070	48	114
Vacuum vessel	t	875	32	48
Conductor length	km	84	16	23

Figure 7.6: a) Cold mass for a central solenoid of 4 T with two forward solenoids and b) a central solenoid of 4 T and two forward dipole magnets with field integral of 4 Tm.

Dipole:

- Loose rotational symmetry
- Need compensation system for the hadron beam
- Better tracking performance however

Figure 7.7: Longitudinal half-sections of the two versions of the magnet system. Magnetic fieldmap for a central solenoid of 4 T with a forward dipole (left) and a forward solenoid (right).

Total and residual ionizing dose

b)

Material budget

Figure 7.10: Material budget of the different sub-systems. The calorimetry provides $\geq 10.5 \lambda$ nuclear interaction lengths to maximise shower containment and the total detector material represents between 180 and 280 X_0 radiation lengths.

Boosted b-tagging

41

- LHC: 30 PU events/bc
- HL-LHC: I 40 PU events/bc
- FCC-hh: 1000 PU events/bc

Timing helps in identifying PU vertices

High Mass resonances

- Constant term drives jet energy resolution at high p_T
- Directly impacts sensitivity for excluding discovering narrow resonance high mass resonances Z' → j j
- Small impact on strongly coupled (wide) resonances

43

Jet Pile-Up identification

- With 200-1000PU, will get huge amount of fake-jets from PU combinatorics
- need both longitudinal/lateral segmentation for PU identification
- Simplistic observables show possible handles, pessimistic.. (in reality tracking will help a lot)

100 TeV machine parameters

	LHC HL-LHC		FCC	FCC-hh	
			Initial	Nominal	
Physics performance and beam parameters					
Peak luminosity ¹ $[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	1.0	5.0	5.0	< 30.0	
Optimum average integrated luminosity / day $[fb^{-1}]$	0.47	2.8	2.2	8	
Assumed turnaround time [h]			5	4	
Target turnaround time [h]			2	2	
Peak number of inelastic events / crossing	27	135 levelled	171	1026	
Total / inelastic cross section σ proton [mbarn]	111	/ 85	153	/ 108	
Luminous region RMS length [cm]			5.7	5.7	
Distance IP to first quadrupole, L* [m]	23		40	40	
Beam parameters					
Number of bunches n	28	08	104	400	
Bunch spacing [ns]	25	25	25		
Bunch population N $[10^{11}]$	1.15	2.2	1	.0	
Nominal transverse normalised emittance [µm]	3.75	2.5	2.2	2.2	
Number of IPs contributing to ΔQ	3	2	2+2	2	
Maximum total b-b tune shift ΔQ	0.01	0.015	0.011	0.03	
Beam current [A] 0.584 1.12		1.12	0	.5	
RMS bunch length ² [cm]	7.55		8	8	
IP beta function [m]	0.55	0.15 (min)	1.1	0.3	
RMS IP spot size [µm]	16.7	7.1 (min)	6.8	3.5	
Full crossing angle [µrad]	285	590	104	200^{3}	

Table S.1: Key FCC-hh baseline parameters compared to LHC and HL-LHC parameters.

¹ For the nominal parameters, the peak luminosity is reached during the run. ² The HL-LHC assumes a different longitudinal distribution; the equivalent Gaussian is 9 cm. ³ The crossing angle will be compensated using the crab crossing scheme.

Cavern and MDI

- $L^* = 40m$ (as opposed $L^* = 23 m$ in LHC experiments)
- Last focusing quadrupoles are outside the cavern
- MDI is not a concern (as opposed to e⁺e⁻)

MDI

Figure 2.4: Detector region layout.

2m thick shielding wall to protect front of final focus system from collisio debris