Open kick-off meeting of the ep/eA@CERN Study October 31st 2023

Proton and nuclear structure from EIC and HERA (and LHC) to LHeC and FCC-eh

WG Conveners:

Néstor Armesto (Santiago de Compostela, <u>nestor.armesto@usc.es</u>), Claire Gwenlan (Oxford, <u>claire.gwenlan@physics.ox.ac.uk</u>), Paul Newman (Birmingham, <u>paul.newman@cern.ch</u>) <u>WG indico page</u>: <u>https://indico.cern.ch/category/17307/</u>

The ep/eA study at the LHC and FCC – new impactful goals for the community

C. Gwenlan, U. Klein, P. Newman, Y. Papaphilippou, C. Schwanenberger, Y. Yamazaki

Large extension of the kinematic plane \Rightarrow

unprecedented possibilities for precise understanding of p/A structure and q/g dynamics

x15/120 extension in Q², 1/x reach wrt HERA

Open questions:

- Precise PDFs without uncertainties inherent of pp/pA/AA (e.g., factorization, additional physics,...).
- Complete unfolding of all parton species.
- Existence and characterization of a new, non-linear, regime of QCD.
- 3D structure in the region of interest for future hadronic colliders.
- Complementarity/synergy with EIC and LHC.

<u>Note</u>: plots taken from the CDR Update, 2007.14491, unless otherwise stated.

- \rightarrow Precise determination of collinear PDFs in ep and eA, and α_s :
- Highlight the role of DIS versus hadronic collisions.
- Establish the complementarity with the EIC and the LHC.
- Need to go to N³LO and include EW corrections, and beyond.

DIS offers the cleaner EXP & TH environment, possibility for single experiment/system for complete determination; required for precise SM and BSM prediction for hadronic colliders.

Uncertainties on the gluon

- \rightarrow Precise determination of collinear PDFs in ep and eA, and α_s :
- Highlight the role of DIS versus hadronic collisions.
- Establish the complementarity with the EIC and the LHC.
- Need to go to N³LO and include EW corrections, and beyond.

LHeC simultaneous PD	F+a _s fit:
----------------------	-----------------------

- $\succ \Delta \alpha_{\rm s}(m_{\rm Z}) = \pm 0.00022_{(\rm exp.+PDF)}$
- $\succ \Delta \alpha_{\rm s}(m_z) = \pm 0.00018$ (with ep jets)
- Achievable precision: O(0.1%) x5-10 better than today
- $\succ \alpha_s$ from fits to ep jet production (LHeC)
- FCC-eh further increases precision and range

2307	.01183	Hadron Co Category / HERA Dat Lattice Av World Ave HERA and	>IIIders Averages PD a erage FLAG erage PDG 20 EIC Data	G 2022 2021)22
NTLAS ATEEC CMS Jets V, Z Inclusive Linclusive			0.1185 0.1166 0.1188 0.1177	5 ± 0.0021 5 ± 0.0016 3 ± 0.0016 7 ± 0.0034
Decays Q Bound States DF Fits * e Jets and Shapes	,		0.1178 0.1181 0.1162 0.1171	± 0.0018 ± 0.0037 2 ± 0.0020 ± 0.0031
ilectroweak Fit EUS Inci. Jet Data I1 Inclusive Jet/Dijet Data I1 and ZEUS Inclusive + Jet Data			0.1208 0.1142 0.1166 0.1156	± 0.0028 ± 0.0018 ± 0.0030 ± 0.0031
attice Average Vorld Average IERA Incl + Jet and EIC Incl Data IERA and EIC Inclusive Data			0.1184	$\begin{array}{c} \pm 0.0008 \\ 0 \pm 0.0009 \\ \pm 0.0007 \\ \pm 0.0004 \end{array}$
	0.115	0.12	0.125	$\alpha_{s}(M_{7}^{2})$

 10^{3}

10

M_v (GeV)

M_v (GeV)

- \rightarrow Precise determination of collinear PDFs in ep and eA, and α_s :
- Highlight the role of DIS versus hadronic collisions.
- Establish the complementarity with the EIC and the LHC.
- Need to go to N³LO and include EW corrections, and beyond.

→ New non-linear regime of QCD at small x:

- Use of observables beyond inclusive ones.
- Complementarity with UPCs and pA at the LHC, and the EIC.

DIS offers the cleaner EXP & TH with both protons and nuclei; essential for complete understanding of QCD; relevant for observables in hh/AA at available and higher energies.

→ New non-linear regime of QCD at small x:

- Use of observables beyond inclusive ones (e.g., diffraction, exclusive production).
- Complementarity with UPCs and pA at the LHC, and the EIC.

DIS offers the cleaner EXP & TH with both protons and nuclei; essential for complete understanding of QCD; relevant for observables in hh/AA at available and higher energies.

- → Proton/nucleus structure beyond 1D with diffraction and semi-inclusive observables:
- Establishing a clear path between theoretical concepts and experimental observables.
- Need for dedicated studies in eA to distinguish coherent from incoherent diffraction.
- Elaborate with the TMD community the advantages of large lever arms in x and Q².

Intrinsic interest in QCD; relevant for MC models, and initial conditions in HIC and small systems.

→ Proton/nucleus structure beyond 1D with diffraction and semi-inclusive observables:

- Establishing a clear path between theoretical concepts and experimental observables.
- Need for dedicated studies in eA to distinguish coherent from incoherent diffraction.
- Elaborate with the TMD community the advantages of large lever arms in x and Q².
 Intrinsic interest in QCD; relevant for MC models, and initial conditions in HIC and small systems.

Proton & Nuclear Structure – Organisation

→ Collaborations:

- MC community to include LHeC/FCC-eh energies in their plans.
- TH community on radiative corrections for the need of N³LO and beyond.
- TH TMD community for studies at small x.
- EIC community about diffraction, 3D structure and PDFs.
- LHC community about PDFs and small x (UPCs and pA).
- Detector WG about detector needs, specifically for diffraction and semi-inclusive measurements.

→ Organisation:

- One subgroup per item (three in total).
- Regular (~ monthly meetings) of the subgroups.
- One workshop per year, all three subgroups together.

Self-subscribe to the WG mailing list: <u>ep-eA-WG1-structure@cern.ch</u>.

Anyone with a CERN account or a light account can register to this email list (as well as sign out). Subscribe/unsubscribe to the list via: <u>https://e-groups.cern.ch/</u> (use the search option, and search for "ep-eA-WG" in all e-groups).