AliEVE

ALICE Event Visualization Environment

Matevž Tadel
Alja Mrak-Tadel
Contents

- Introduction to ALICE
- Basic ideas & Architecture
- Features & Status
- Demo
- Conclusion
ALICE: basic user environment

ALICE + ROOT → AliROOT ♥

- Only external dependencies transport engines
- Runs on almost every os/arch (but windows)

Event data is stored in a set of ROOT files:

- split by detector and type; e.g. TPC.Digits.root
- all data stored in TTree’s
- TClonesArray’s used for logical grouping

Used directly for data interaction/analysis:

- CINT scripts and ROOT prompt
- histograms, 2D-graphics, browser, context-menus

Users accustomed to this ...

27.3.2007 M. Tadel: ALICE Event Visualization [ROOT-07, CERN]
ALICE central Pb-Pb event properties

- Large data size: 80 MB compressed raw event
- 60k TPC hits (1/cm)
- 60k TRD hits
- 3.2M TRD hits
- 1.5 GB size of full simulation/reconstruction
- Problem for reading and keeping it in 60k primaries
- Kinematics: 60k primaries, 600k stored
- Hits: 150M (TPC); Clusters: 3.2M (TPC), 1.6M (TRD)
- Reconstructed tracks: 16k

- It is not about showing everything ...

27.3.2007 M. Tadel: ALICE Event Visualization [ROOT-07, CERN]
Event Visualization in 3D

“Visualization of” and “GUI to”:

- detector geometry
- event data:
 - simulation records: kinematics, hits, digits
 - raw data
 - reconstructed objects: clusters, tracks, V0's ...
 - physics objects: b-tags, Z0/H-candidates, ...
- reconstruction & analysis algorithms
- calibration and alignment data

Used by:

- experts: visual debugging, development of algorithms
- non-experts: understand detector, event structure, ...
- presentations, demonstrations ... outreach

Too many elements, too many use-cases ...
Event Visualization Environment

Framework for specific event-displays.
Build on top of ROOT, same philosophy:
modular, loosely coupled class toolbox

- ROOT GUI – full toolkit, interpreted!
 GED – class editor: TPCSect or 2D → TPCSect or 2DEditor
- ROOT OpenGL – geometry + basic atoms
 Direct rendering: TPCSect or 2D → TPCSect or 2DGL
- Provide additional elements as needed
 - Start with basic low/medium-level elements
 A lot provided by ROOT anyway (browser/list-tree)
 - Build composite/top-level widgets from those
 - Concrete cases can be done w/ gui-builder/scripts
Meta-architecture

- Two main modules:
 1. *Reve*/ROO
 1. Application core
 2. Framework base-classes for GUI and VIZ
 3. Basic visualization classes (points, tracks, ...)
 Can be compiled in stand-alone mode
 Will eventually become part of ROOT
 2. *Alieve*/AliROOT
 1. Event loading / navigation
 2. Classes for detector-module representation (raw-data)
 3. CINT scripts perform most of the work

- Non-standard features – (Ali)ROOT standpoint
 namespaces, exceptions, minimal use of STL
Application core

1. Management of browsers & viewers
 Including redraw / refresh hooks

2. Registration of visualization objects
 a) **Global storage**: geometry, layout, ...
 b) **Event storage**: wiped on event change

3. Execution environment for CINT scripts
 Variables / functions to make scripts simple, e.g.:
 \[\text{Reve::AssertMacro(const char*)} \]

4. Event management & navigation
 Things to do/execute for each event

5. Task / thread management (data import/selection) – wait for CINT
Reve::RenderElement

Base-class for inclusion into object hierarchies:

1. List of children – graph traversal / rendering
2. List of browser / GUI representations – update!
3. List of parents – destruction!
4. Visibility of self / children
5. Main color pointer (show in browsers)

Not TObject derived!

- Has virtual TObject* GetObject()
- Use double inheritance or
- Use class RenderElementObjectPtr
 This can wrap any existing TObject.
Visualization classes – I.

Geometry:
- TGeo-interface classes
 - Direct usage via TGeoPainter: requires geometry
 - Extracted shape-data: standalone, fully configurable

Hits, clusters:
- **PointSet**: public TPolyMarker3D, extended
 - Allow per-point TRef (optionally owned by the object)
 - Direct-rendering, secondary-selection
 - Special TSelector provided for filling – use Tree machinery
- **PointSetArray** – an array of point-sets
 - Select on external criteria provided during filling
 - Currently only 1D ... but we can do n-D!
 - Interactive histogram
Visualization classes – II.

Trajectories, particles, tracks:

- **Line**: public PointSet
- **Track**: public Line

 Supports extrapolation in (const) magnetic field

 Field-maps needed (w/ material: fast-sim, visualization)

 Can specify position/momentum at (interesting for kinematics):
 1. arbitrary reference points (enter/leave certain volume)
 2. daughter creation points / momentum
 3. decay

- **TrackList** – a collection of tracks

 Again, can provide external criteria for interactive selection: pT, chi2, ...

27.3.2007

M. Tadel: ALICE Event Visualization [ROOT-07, CERN]
Visualization classes – III.

Digits, raw-data:

- **QuadSet** – set of rectangles, lines or hexagons
 - Supports per quad TRef → secondary-selection
 - Used for silicon detectors, TRD, TOF, PMD, ...
- **BoxSet** – set of boxes (calorimeters)
- **TriangleSet** – arbitrary triangle mesh

Support classes:

- Instances shared among several modules
- **RGBAPalette**: map signal to colors + thresholds
- **FrameBox**: provide a uniform frame

Ref-counting (auto-deletion) & back-refs (update)
Reve as stand-alone environment

So we have many features ... we need to glue them.

Use CINT scripts for:

- steering of data extraction
- preparation of visualization objects
- creation of GUI elements (if object-editors are not enough)

VSD – Visualization Summary Data

- produce for selected events or obtain from grid
- extract data interesting for specific use

Just a tree (collection) in a ROOT file, pack with it:

1. Scripts to extract & visualize data
 Potentially one can include Reve as a compilable script (20k loc)
2. Scripts to create GUI
3. Detector geometry

These can be shipped and used w/ standard ROOT!
ALICE specific parts

1. Run / event loader
 Interface to geometry/mag-field/alignment/calibration data

2. Display of raw-data / digits
 Mostly use base-classes from Reve
 TPC visualization very specific ... 60MB event data!

3. VSD can be produced
 [minimal data classes part of Reve]
 Kinematics, hits, clusters, rec-tracks, V0s and kinks
 Not really used now ... prefer full-data for debugging.
 We expect this to change when data comes (windows)

4. Scripts
 Most have very little dependence on AliROOT
 Some of them quite elaborate (selection, object hierarchy)
 Can be potentially converted to compiled code/classes
Example script: silicon detector hits

```c
Reve::PointSet* its_hits(const char *var_exp = "fX: fY: fZ",
                         const char *selection = "",
                         Reve::RenderElement *cont = 0)
{
    // GET THE TREE – ALICE SPECIFIC, BUT COULD AS WELL GET IT MYSELF!
    AliRunLoader* rl = Ali::Event::AssertRunLoader();
    rl->LoadHits("ITS");
    TTree* ht = rl->GetTreeH("ITS", false);

    // CREATE VISUALIZATION OBJECT
    Reve::PointSet* points = new Reve::PointSet(Form("ITS Hits '%s'", selection));
    TPointSelector ps(ht, points, var_exp, selection);
    ps.Select();

    // REGISTER THE RESULT
    gReve->AddRenderElement(cont, points);
    gReve->Redraw3D();

    return points;
}
```
Demo I: p-p@14TeV

1. Overall look

2. Geometry
 1. ITS from TGeo: render-modes, lights, clipping
 2. Reduced ALICE
 Explain render-element, editor, browser

3. Kinematics:
 1. Selection / picking, spawn editor, export to CINT
 2. Track-refs
 3. Choose-by-pT
 4. Import hits/clusters from context-menu

4. Next-event: geometry remains, event removed

5. TPC-hits
 1. by eta and by charge
 2. show histogram by charge from the file
Demo II: HIJING cocktail 1k primaries

1. ITS digits
 1. Show the 6 layers
 2. Select inner SSD ... show palette
 sec-selection
 3. Select inner SDD ... show how small it is
 sec-selection

2. ITS module stepper
 1. Zoom ... easier in 2D
 2. Scale
 3. Modes: average / occupancy

3. TPC digits preview
 Time, threshold/max-val, sec-selection
Demo III: TPC commissioning

Run 872_2

1. 2D view, gating pulse at low times
 Threshold, sec-selection, noise

2. 3D view, zoom in
 point-fractions and thresholds

3. Disable auto-pedestal, load event 6
 Show base-line – non-zero suppressed data
Demo IV: p-p@900GeV visual scanning

1. Primary-vertex
2. ESD track criteria
3. ITS hits
4. Select tracks as primaries
5. Top-level UI: event-nav, camera
6. Report histograms
Demo V: HIJING cocktail 10k primaries

To show something more hairy ...

- ITS hits
- TPC hits eta-split
- Kinematics (higher cutoff pT>500 MeV)
- ESD tracks w/ vertex cuts
- TPC digits
- Ludovic Gaudichet: V0 viewer
Conclusion

1. Minimal application core + base-classes
 Solve general problem in Reve ...
 and specific ones in Alieve.

2. Via scripts users gain full flexibility
 1. edit them for specific selections, packing of output
 2. extend them to include user’s private data
 3. combine them together
 Allows fast development of specific display programs

3. Often data can be visualized directly from ROOT
 1. trees, scripts and other data can be packed together in a
 single ROOT file containing several events
 2. independent of experiment software
 laptops, unsupported platforms; use by universities, outreach