3D graphics with OpenGL

recent improvements and plans

Matevz Tadel

Including work from: Alja Mrak-Tadel & Timur Pocheptsov

Contents

1. Overview of status at ROOT-05

2. Extensions of existing viewer (for ALICE event-display)
Speed ... flexibility ... interactivity
Implementation details here ...
demo with many examples during my next talk
3. Desire for complete OpenGL support
Started December 06
[0 What has been done already
1 What will be done before summer

4. Conclusion

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN]

Status @ ROOT-05 / CHEP-06 — I.

Work done by R. Maunder & T. Pocheptsov
Based on TVirtualViewer3D API

TGLViewer just one of 3D viewers; draw via TPad: :Paint()

Use TBuffer3D for all transfer of data to viewer

classes know their 3D representation, but don’t care who
renders it and how

Positive (and impressive):

Optimized for geometry rendering
Support clipping / view frustum culling
Support view-dependent level-of-detall
Support CSG operations (following TGeo)

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 3

Status @ ROOT-05 / CHEP-06 — 1.

Negative (but not an iIssue then):
Over-optimized for geometry rendering

Scene-updates drop all internal state =
not suitable for frequent refreshes / small changes

Hard to extend for classes that require complex
visual representation (e.g. raw-data)

But this was a known trade-off for using TBuffer3D.
Stand-alone viewer victim of feature pile-up

Selection, clipping & manipulators tightly knotted.

Hard to extend (but possible for a price of some ifs),
Impossible to sub-class or control externally.

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN]

Extensions of existing GL viewer

Jan 2 Aug ‘0O5: explore GL on central Pb-Pb events
60k tracks, 10M TPC hits =>» too much data!

Interactivity is the key

Early ‘0O6: first prototype of ALICE display using
ROOT GUI and OpenGL

Apr ‘06: direct OpenGL rendering for ROOT classes
Aug ‘06: two-level selection (container contents)

+ some other minor changes:

decoupling of viewer GUI to follow GED convention
beahaviour of camera during updates, handling of small objs

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 5

Direct OpenGL rendering — I.

Manually implement class for GL rendering, eg:

1. For class PointSet3D implement:
class PointSet3DGL : public TGLObject

{
virtual Bool t SetModel (TObject* obj);

virtual void DirectDraw(TGLDrawFlags& flags);
};
2. In SetModel () check if obj is of the right class and
store it somewhere (data-member in TObjectGL)
3. DirectDraw() is called by viewer during draw-pass
Here do direct GL calls, change state, draw whatever.
Leave GL in a reasonable state — others depend on it.

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN]

Direct OpenGL rendering — Il.

ALICE ITS ALICE TPC

G
i /""{“‘
R AN
WL ,‘(’/f.
l///*;g/ gl
R
o }'f’ ey
i e s
N
Ay kS
“ W e, s

S
i ' iy
L

Gl

7

i

F
® b 5
/ i
v
i dey
@f@%fﬁ/
ff{)f/ 4

; i,
A
,Jé[I‘fﬁf a4

AW

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 7

Direct OpenGL rendering — IIl.
ALICE PMD

3D Graphics with OpenGL [ROOT-07, CERN]

M. Tadel

27.3.2007

Direct OpenGL rendering — IV.

How this works:

1. In Paint() fill only Core section of TBuffer3D:
TObject* TID, color, transformation matrix
Pass it on to viewer.

2. Viewer scans fID->1sA() and parent classes
searching for <class-name>GL class.

Only once per class ... cache result in a map.

3. If found, an object is instantiated via TClass: :New()
DirectDraw() is called for rendering.
The GL object can access data of its creator!

4. If not found, negotiation with the viewer continues

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN]

Direct OpenGL rendering — V.

Benefits:

1. Flexibility — users can draw anything
Not limited to shapes representable by TBuffer3D.
Provide GL-class, everything works with std ROOT!
A lot can be done with a small number of classes.

2. Avoid copying of data twice (into/from buff-3d)
Important for large objects (10M hits in ALICE TPC).

But ... this is OpenGL specific solution.

To also support other viewers one could provide:

a) minimal buff-3D representation for each such class
b) similar mechanism for other viewers

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 10

Two-level selection — 1.

Imagine a list of clusters, array of digits, ...
One would like to:

a) Treat them as a collection
Select, move, turn on/off, change color, cuts, ...

b) Obtain information on individual element
Investigate, select for further manipulation

Each element a viewer-object: waste memory/speed

GL supports bunch-processing commands that can not be
used in low-level selection mode. Thus use:

[1 Optimized version in drawing / first-pass selection

[0 Special render-path during second-pass (single object!)

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 11

Two-level selection — 11.

ALICE TPC Sector

1. First-pass: 3 textured rectangles
Identify object by sector id.

2. Second-pass: —8000 cells
Identified row / pad.

File Edit View Options Inspect Classes

il Hel
|_Segment 4, Row 28, Pad 53 | :eﬂ:TRME-P“:;
ntries

Mean 180.2
RMS 167.3

1, o

. E'Il .".'"i" |.-' F

|

1 1 1 11 1 1 1 | 1 1 1 1 1 | 1 1 1
100 150 200 250 300 350 400 450
Time

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 12

Two-level selection — 111.

Work is done by the viewer and GL-object-rnr:
class TPointSet3D : public TGLObject

{
virtual Bool t SupportsSecondarySelect();

virtual void ProcessSelection(UInt _t* ptr, .);
};
1. First-pass — determine closest object
2. Second-pass — render that object with sub-ids
The renderer is informed that we’re in sec-selection
3. Deliver the selection record back to GL object!
It tagged elements and should interpret the ids.

Call function in the master object.
E.g. TPC row/pad - data-holder can produce histogram

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 13

End of extensions of existing GL viewer

All these changes were evolutionary.
Allowed implementation of ALICE event-display

Summer '06: major restructuring of GL needed to:

1. Support multi-view displays (shared scenes)

2. Optimize update behaviour for dynamic scenes
3. Modularize input handling (mouse, keyboard)
4. Have appl-specific selection, context and tools

Role of OpenGL .vs. other 3D renderers:

GL becomes the main 3D engine in ROOT!
Others retain minimal support / no new development

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 14

RootGL — The Next Generation

December: Why go only half the way? We could:
a) Do all pad-graphics in GL / free mix of 2D & 3D
b) Have all GUI rendered via GL ... err ... not yet.

Mini-revolution needed to keep all options!

Manifest, including concerns from previous slide

I. Provide flexible / general OpenGL infrastructure
1. Support existing ROOT use-cases + new ideas above
2. Include external GL code (non-root based) in ROOT viewer
3. Include ROOT scenes in other environments / toolkits

Il. Restructure existing code with maximum reuse
1. Existing functionality kept as a minimal specific case

2. New functionality introduced in parallel classes / implementation

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 15

RGL-TNG: Basic infrastructure

1. Low-level GL support [Timur]
[0 on/off-screen rendering
[0 guidance for feature-use depending on arch
[frequently used services/functions

2. Decouple base GL from GUI
split libraries: 11bRGL, 11bRGLGuUI

3. Keep TVirtualViewer3D for compatibility
Default interface for TObject/TPad: :Paint()

4. Slowly introduce new virtual layers for:
Passing information on current/selected object

Event handling / user-interaction
Partial updates, refreshes, animations

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 16

RGL-

'NG: New Viewer—Scene diagram

TGLYlewerBase

i

A

TCGLVIewer

TGLSceneBase
TVirtualViewersD T
T TGLEcene
TGLFad5cene

L 1

» TGLStdViewer

TGLSdScene s

TeLSAVIewer

. retaing functicnaity of current _,,-p*"
**aq,, TGLViewer(TGLScene | ee*°

*TGLSceneBase

Bounding-box = draw visible only

Viewer-list =» updates

Place to plug-in foreign scenes

No assumptions about content

*TGLScene

Containers for logicals/physicals

Cleaned version of current scene

Use this to ‘export’ a ROOT scene

*TGLStdScene

Current TGLScene

TGLPadScene

Natural inclusion of pad-contents:
thus we can service old classes!

Note virtual-viewer3D inheritance

e TGLViewerBase: minimal; becomes a collection of scenes + render steering + camera

e TGLViewer:
e TGLStdViewer:

add selection & GUI interface (already ROOT specific!)

current TGLViewer, sub-classes from virtual-viewer3D

27.3.2007

M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 17

RGL-TNG: What Is already done

Rewrite of low-level GL interface [Timur]
GL-context management

Important for sharing of data among several viewers
Clean-up of logical/physical-shape classes
Improved display-list & LOD management

Clean-up of rendering paths/states
Let workers know render-pass details & camera-info

1/ AFf A A inta h |
—~72 01 SCerne CoGe SCaverngea into oase-CiaSses

~1/4 1S beyond salvation = must re-implement

Fine-grained per-object updates/adds/removals
Missing virtual interface = use TGLScene directly.
But these features are GL-only anyway ...

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 18

RGL-TNG: Still to be done

For next dev-release (end of April):
Extract selection code into base-classes
Provide basic implementation of new viewer
with multiple scenes

For the next pro-release (end of June):

General event-handling / selection mechanism
Different options for mixing 2D/3D pad graphics
Use new font library when available [Olivier]

Some optimizations of rendering on all levels

LOD calculation
store scene-draw state for next pass / selection

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 19

Conclusion

OpenGL support in good shape & improving

Last year’s development driven by needs of
ALICE visualization

That’s good = heavy-ion events are BIG
Interactivity & flexibility

This year started with a bloodless revolution ...
which we hope to mostly end by July.

Modularization, better control on all levels

Overhead-free scene updates

Good time for further requirements ... let us know!

27.3.2007 M. Tadel: 3D Graphics with OpenGL [ROOT-07, CERN] 20

