Hide latencies, increase
throughput

Exploiting some
new features in the xrootd data access system

Fabrizio Furano
INFN - Istituto Nazionale di Fisica Nucleare
furano@pd.infn.it
Andrew Hanushevsky
SLAC — Stanford Linear Accelerator Center
abh @slac.stanford.edu

mailto:furano@pd.infn.it

Motivation

e The typical way in which HEP data 1s processed
1S (or can be) often known 1n advance

e Fast and scalable server side
— Makes things run quite smooth

— Gives room for improvement at the client side
e About WHEN transferring the data

e There might be better moments to trigger a chunk xfer
— with respect to the moment it is needed

 Better if the app has not to pause while it receives data

e Many chunks together
— Also raise the throughput

A simple job

* A simplification of the problem
— A single-source job
— Processes data “sequentially”

* 1.e, the sequentiality 1s 1n the basic 1dea, but not necessarily
in the produced data requests

- e.g. scanning a ROOT persistent data structure

while not finished
d = read(next_data_piece)
process_data (d)

end

Simplified schema

We can make some Client
simple hypotheses. ‘

Hypothesis: the data are not Server
local to the client machine

Hypothesis: there 1s a server
which provides data chunks

Server

Client

1 client
1 server Data
A job consisting of several Processing
interactions — Prepare
next
step

-..----..-......H----.-......H--.-..

Latency

e The transmission latency (TCP) may vary
- network load
— geographical distance (WAN)
e ¢.g. Min. latency PD-SLAC 1s around 80ms (about %2 of the
ping time)
e ¢.g, 1f our job consists of 1E6 transactions
— 160ms * 1E6 makes our job last 160.000 seconds more
than the i1deal “no latency” one
— 160.000 seconds (2 days!) of wasted time

e Can we do something for this?

Throughput

e The throughput 1s a measure of the actual data

xfer speed
— Data xfer can be a non negligible part of the delays

— Throughput varies depending on the network
e Capacity and distance
— For WAN s 1t 1s very difficult to use the available
bandwidth
e e.g. A scp app PD-SLAC does not score better than 350-
400K B/sec, much less than the available bandwidth
— Even more important:

 We want to access the data files where they are
— By annihilating all the latencies

Prefetching

e Read ahead

— the communication
library asks for data in
advance, sequentially

* Informed pretetching

— the application informs
the comm library about
its near-future data
requests

— One/few at each request
(async read) or 1n big
bunches (vectored reads)

Client Server

Cache hit!
But we keep asking for
data in advance,
in parallel

.....H-..--

&

More than a cache

 Trouble: data could be

requested several times
e The client has to keep
track of pending xfers
e Originally named
“Cache placeholders™
(Patterson)

Client Server

Cache hit!
But we keep asking for
data in advance,
in parallel

AN/
"">

- 2

but the data 1s

It seems a miss

1n transit

\

Better to wait
for the right

pending chunk

than re-requesting!
But avoiding overheads!

_

Intuitive scenarios (1/2)

Pre-xfer Remote Remote
data access access+

the prediction
can be wrong.
Can be

acceptable!
A 4

Data access

“locally” ;
' :
1 1
| 1
' ¥]
: B |
: 3
Overhead : o
Need for ' i
potentially E | E
useless replicas ; Latency o i
: Wasted CPU k. !
. Efficient
. gifeles ractical =
' but practical P |
Dot : Sometimes
: ' (some %)
Processing :
[|
|
|
[|
1
|
|

- EE O EE O EE tLll

Intuitive scenarios (2/2)

Vectored
reads

|

: Efficient N

: No data xfer

overhead.
Only used chunks
get

prefetched /

All (or many) of the |

chunks are requested
at once.
Pays latency
only once if no
probability of
mistakes.
But pays the

\actual data xfer/

oo BE

Async
vectored
reads
1
: Inform that some
= | chunks are needed.
Ly Processing starts
normally, waits
0 only if hitting a
“travelling” one.
In principle,
this can be made
B very unlikely.
(by asking chunks
more in

\\\ advance)

How todoit? (1/4)

while not finished
d = read(next_data_piece)
process_data (d)

end

How to do it ? (2/4)

enumerate needed. chunks ()
readV (needed chunks)
populate_buffer (needed_chunks)

while not finished
d = get_next_chunk_frombuffer ()

process_data (d
end

All this can be transparent to ROOT
Ttree users via TtreeCache, implemented
using HUGE sync vectored reads

Vectored
reads

-

Efficient \
No data xfer
overhead.
Only used chunks
get
prefetched /

All (or many) of the |

chunks are requested

at once.
Pays latency
only once if no
probability of
mistakes.
But pays the

Qctual data xfer/

How to do it ? (3/4)

Remote
XrdClient keeps the data as it arrives, in parallel! ez
ile not finished .
Read_async (n+1lth_chunk) il
d = read(nth_ chunk) L:LJ
process_data (d) =
end :
mH
]
mn
One data chunk is coming :
while the preceeding is processed. "
We can also look more ahead (n+2, n+10, ...) .

How to do 1t ? (4/4)

Async
vectored
reads

XrdClient keeps the data as it arrives, in parallel!

m01 !\ Inform that some
1le not finished &+ | chunks are needed.

]

(few_chunks_unprocd) 5 Process;ling starts
: normally, waits
L3/
numerate next M chunks () il i i)
eadV_async (M_chunks) “travelling” one.
In principle,
this can be made
— [
d read (nth chunk o il el
process_data (d) (by asking chunks
end more in
advance)

Many future data chunks are coming
while the nth is processed. Generally little
difference if the ReadV_async becomes a loop of
Read_async. It depends!

Throughput?

—

*:

1:4 <

T

Multiple streams (1/3)

Clientl

4

N

Client2

™\

Client3

™\

/

Application

Clients see
One Physical
connection per

SEerver

G ———-
TCP (control+data)

Server

Multiple streams (2/3)

Clientl

//

Client2

N

™\

Client3

Application

™\

connection per

Clients see
One Physical

SEerver

7 TCP (control) ;

- >
- >
> > Server
- >
- >
\
\
I Async data
gets
automatically
splitted

Multiple streams (3/3)

It 1s not a copy-only tool to move data
— Can be used to speed up access to remote repos

e Totally transparent to apps making use of
* _async reqs

e xrdcp uses it (-S option)
— results comparable to other cp-like tools

* For now only reads are implemented
— Writes are on the way

e Automatic client-server WAN mode agreement
- Very soon!

Resource access: open

e An application could need to open many files
betore starting the computation

 We cannot rely on an optimized struct of the
application, hence we assume:

for (i = 0; i < 1000; i++)
open file 1i

Process_data ()

Cleanup and exit

Problem: a mean of only 5 seconds for locating/opening a file
will take 5000 seconds for the app to start processing

Parallel open

e Usage (XrdClient):
— No strange things, no code changes, nothing required

— An open() call returns immediately
e The request is treated as pending
e Threads takes care of the pending opens
e The opener 1s put to wait ONLY when it tries to access the
data (but still all the open requests are in progress)

e Usage (ROOT 35.xx):

— The ROOT primitives (e.g. Map()) semantically rely
on the completeness of an open() call
— The parallel open has to be requested through

TFile: :AsyncOpenRequest (filename)

Parallel open results

Test performed at SLAC towards the “Kanga cluster”
1576 sequential open requests are parallelized transparently

T T T T T T T
*data~-fabrizio opentestE24l@as. out.open? —

*data~fabrizio opentesktE241@385. out.read?

. 'data~fabrizio opentestE4l@Eas. out.close"?

156

18a

=]

=] =ag 4EE [=yege Z2aa log. 2. 1483 le@

Conclusion

e Implementation platform: xrootd

* readV, readV_async, read async are OK
e ROOT TTrees can use readV
 Parallel Open 1s there too
e Multistream transfers are OK
— used by xrdcp, usable for readV_async and read _async

— Purpose (other than raising performance):
e To be able to give alternative choices for data or replica

placement
— Let people choose why one should need replicas (more reliability,
more performance, willing to 'own' a copy of the data, ...)
e To move towards computing models where some phases
can rely on remote data

— Ev. for backup or fault tolerance purposes (if the nearest location
breaks, fallback to another one with little or no overhead)

