International Conference on Exotic Atoms and Related Topics and conference on Low Energy Antiprotons (EXA/LEAP 2024)

Spectroscopy of η^{\prime}-mesic nuclei with 12C(p,dp) reaction at GSI/FAIR

Tuesday, 27 August 2024 15:15 (25 minutes)

Abstract

The possible existence of η^{\prime} meson nucleus bound states (η^{\prime}-mesic nuclei) has been attracting interests both theoretically and experimentally, since in-medium properties of the η^{\prime} meson are closely related to the axial $U(1)$ anomaly and the chiral symmetry in QCD. The especially large mass of the η^{\prime} meson $\left(\sim 958 \mathrm{MeV} / \mathrm{c}^{2}\right)$ compared with the other light pseudoscalar mesons is theoretically explained by an interplay between the axial $U(1)$ anomaly and spontaneous breaking of chiral symmetry in the QCD vacuum. In the nuclear medium, where chiral symmetry is partially restored, the η^{\prime} meson mass is expected to be reduced. Such a mass reduction would lead to an attractive η^{\prime}-nucleus potential, suggesting the existence of bound η^{\prime}-mesic nuclei. In two experiments to search for η^{\prime}-mesic nuclei, previously performed by using the (p, d) reaction and the (γ, p) reaction, no significant signal of the η^{\prime}-mesic nuclei was observed due to the limited experimental sensitivities.

We have recently performed a new spectroscopic experiment of the ${ }^{12} \mathrm{C}(p, d p)$ reaction in order to search for η^{\prime}-mesic nuclei with an increased experimental sensitivity. We have integrated the WASA central detector into the fragment separator (FRS) at GSI. A 2.5 GeV proton beam impinged on a carbon target to produce η^{\prime} mesic states via the ${ }^{12} \mathrm{C}(p, d){ }^{11} \mathrm{C} \otimes \eta^{\prime}$ reaction. The missing mass of the reaction is obtained by measuring the deuteron momenta with FRS used as a forward high-resolution spectrometer. Simultaneously, possible decay particles from the η^{\prime}-mesic nuclei, especially high-momentum protons ($\sim 1 \mathrm{GeV} / c$) emitted in the decay via the two-nucleon absorption process, are identified with the WASA detector system surrounding the reaction target in order to improve the signal-to-background ratio of the missing-mass spectrum. First data taking was successfully accomplished in February 2022. In this contribution, preliminary results of this experiment and future prospects will be discussed.

Primary author: TANAKA, Yoshiki (RIKEN)
Co-author: WASA-FRS/SUPER-FRS EXPERIMENT COLLABORATION
Presenter: TANAKA, Yoshiki (RIKEN)
Session Classification: Parallel I

