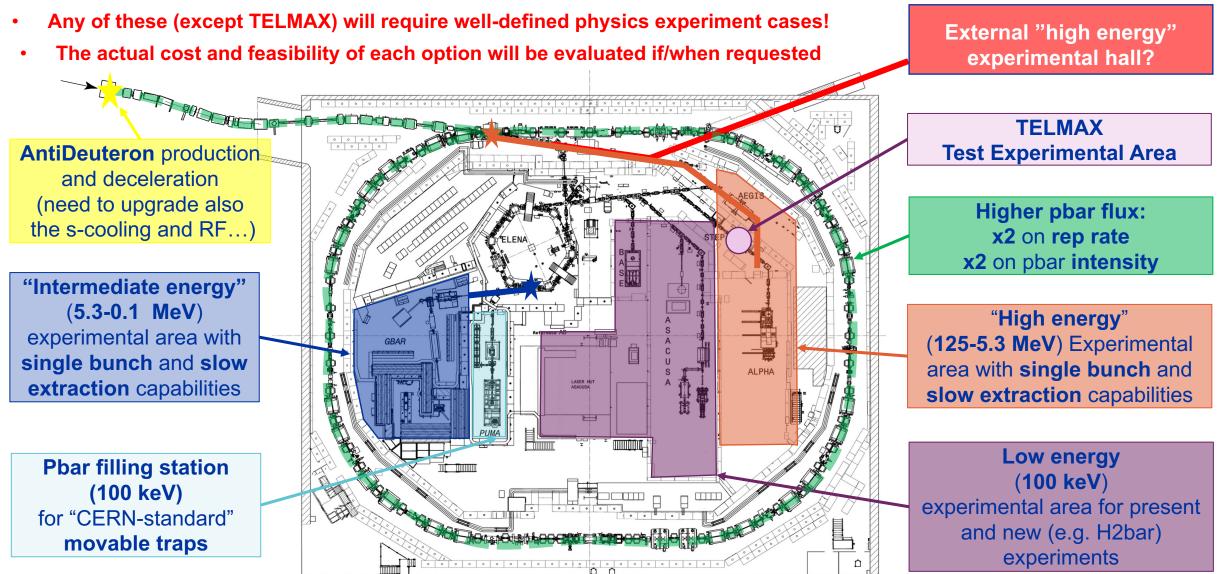

Possible future for AD/ELENA facility

1. The facility will END in LS4

Let's discard this(?), assuming community
has enough to do to justify the existence of
AD/ELENA for the next 20 years...

2. The facility continues AS-IS till ~2042

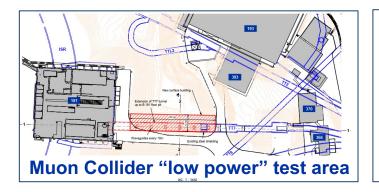

- CERN will need to **invest** in necessary **hardware renovations** (AD power converters, s-cooling, LHe...)
- 3. The facility is <u>upgraded</u> in some ways, to run <u>at least till ~2042</u>
 - What do you need ?!
 - Requests must come "now" to be studied and implemented in/by LS4
- 4. There is the need for different / <u>new</u> <u>antimatter facility</u>
 - Assuming this is **not known at this stage**

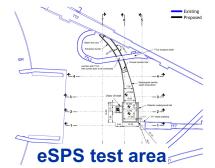
What we could expect (to be worked on...)

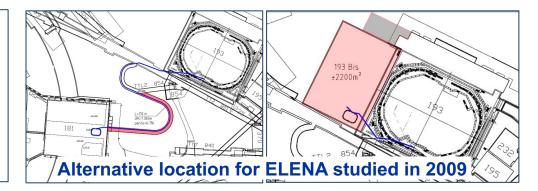
- Proposals for "simple" experiments/modifications (discussed internally)
 - E.g. PAX@TELMAX already "requested" (formal procedure for those kind of requests still to be set up)
 - Change beam distribution scheme (more/less bunches...)
- Requests for "support" to be made to PBC @ CERN (as soon as possible)
 - Study the feasibility of having antideuteron in AD/ELENA and/or a new facility ?
 - E.g. starting from a simulation/measurement of antideuteron yield measurement at AD ...
 - Study the feasibility of **slow extraction from ELENA at 100 keV ?**
- Experiment proposal over the next 20-years (to be submitted @SPSC 11-12 Feb 2025)
 - It is assumed that several ideas already being drafted by each single collaboration (and new ones), assuming AD/ELENA maintained AS IS
 - This might include expressing interest in antideuteron ?
- Requests for "minor" upgrades (to be "requested" @SPSC 11-12 Feb 2025)
 - Helium liquefier on site (only possible after LS3)?
 - Slow extraction from ELENA at 100 keV (possibly during or just after LS3) ?
- Requests for "major" upgrades (to be "requested" @SPSC 11-12 Feb 2025)
 - **Higher flux pbar** production (x2 rep rate and/or x2 intensity) of H2bar production?
 - (Slow) extraction from AD and/or ELENA at higher energy ?
 - Study feasibility of **antideuteron deceleration** in AD/ELENA?
- Proposal requiring "new paradigm" (to be submitted @ESG by 31 Mar 2025)
 - Proposal for **new facility** for **high intensity** and/or **high energy antiproton** and/or **antideuteron** studies ?
 - White paper proposed by the ADUC to establish an overall program (to be discussed at a user-organised workshop, as proposed by Stefan et al.)

Overview of "Independent" Upgrade Cases

Appendix

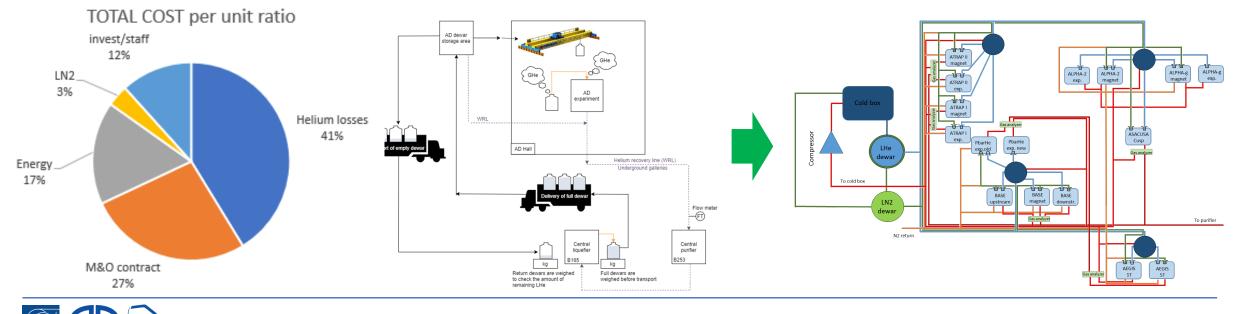



Taking Action: Your Proposals are Awaited !

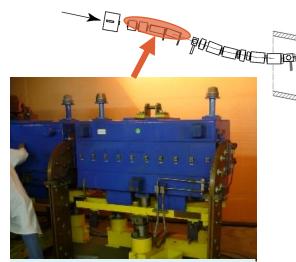

- CERN SPSC 11-12 February 2025 link
 - SPSC expecting long-term (beyond LS3 and, possibly, LS4) proposals (call will be issued soon!)
- European Strategy Update 2026 link
 - Could be the place where to submit even longer term or "new facilities" (e.g. antideuteron at CERN, high(er)-energy-related pbars physics, ...)
 - Written inputs expected by 31 March 2025
- Note : major upgrades normally take place during Long Shutdowns :
 - LS3 (~2026-2028 for injectors)
 - Already too late to propose major upgrades for AD/ELENA
 - Maybe possible to push for minor upgrades, e.g. slow extraction from ELENA at 100 keV ?
 - LS4 (~2033 for injectors)
 - Major consolidations already expected (e.g. power supplies), if facility approved beyond LS4 ...
 - "Last" chance for major hardware upgrades of AD/ELENA
 - (I suppose concrete requests, at least for studies, must be made by end of ~2025)

Bigger Exp. Area? e.g. 1000m² more?

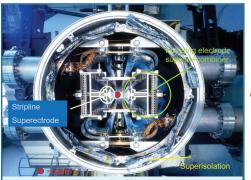
• One must be looking outside of the AD hall, looking at other projects:



- **TTL2** is empty and **not useful**, today.
 - What about **new building** (493?) with semi-underground experimental area for "high energy" experiments?
 - It could take protons from PS, pbars (up to 3.5 GeV/c?) from AD, e⁻ from eSPS?, used as Muon Collider "low power" test area? (e.g. A, B, ...)...



Users Helium Consumption

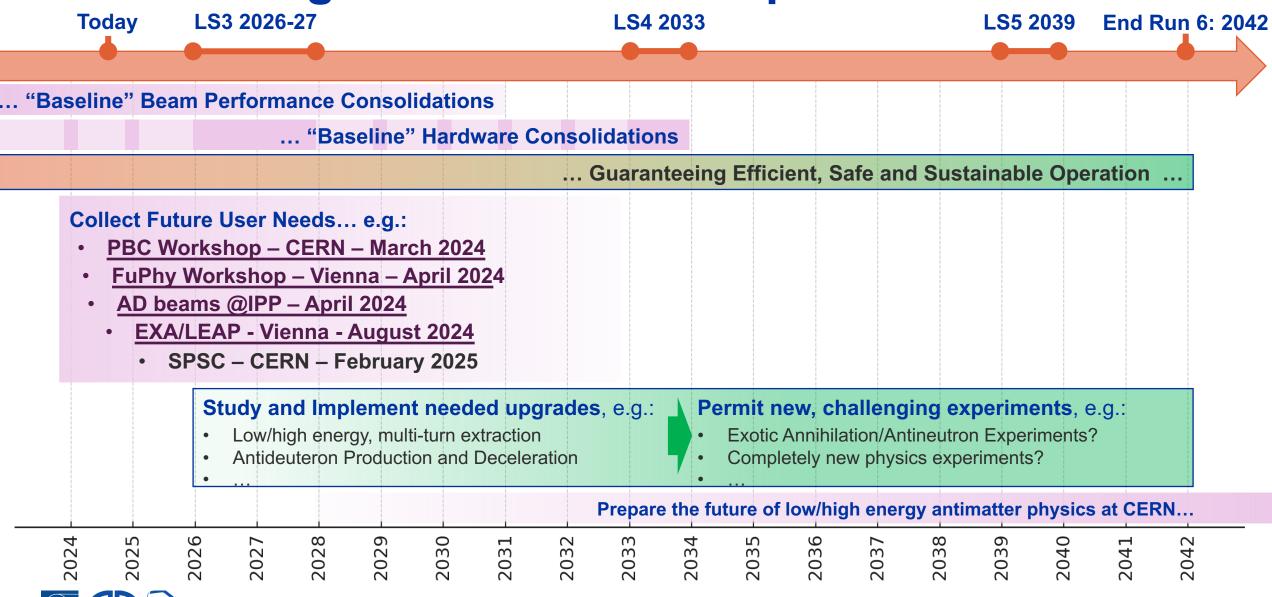

- CERN cost in 2022: ~2 MCHF for ~700x500L dewars of LHe
 - "Constantly" at 20 dewars/week delivery (CERN max capacity: 25 Dewars/week)
 - ~3140 m3/year of gHe (roughly 88 kCHF), mainly needed for pressurize Dewars for IHe transfer
- Alternative cooling methods, e.g. cryocoolers, will require long/costly RD program
- Closed circuit system with local liquefier:
 - Addresses distribution and safety concerns, offering a more eco-friendly solution!
 - Cost 8.3 MCHF + 8.5 FTE (only possible after LS3), savings 0.6 MCHF/year!

Hardware: Most Critical/Aged Items

Injection line magnets with high risk of breakdown and no spare

S-Cooling pickup with no spares, limited know-how

Outdated (and not very "green") cooling and ventilation systems


AD magnets consolidation being finalised

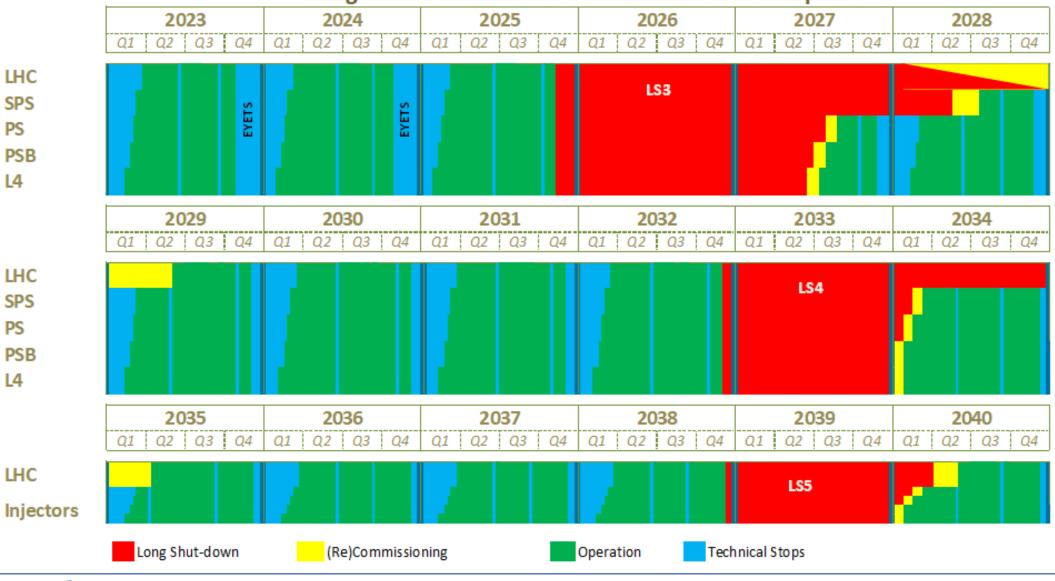
Outdated LLRF and HLRF for C10 cavities

Overall Long-Term Timeline Proposal

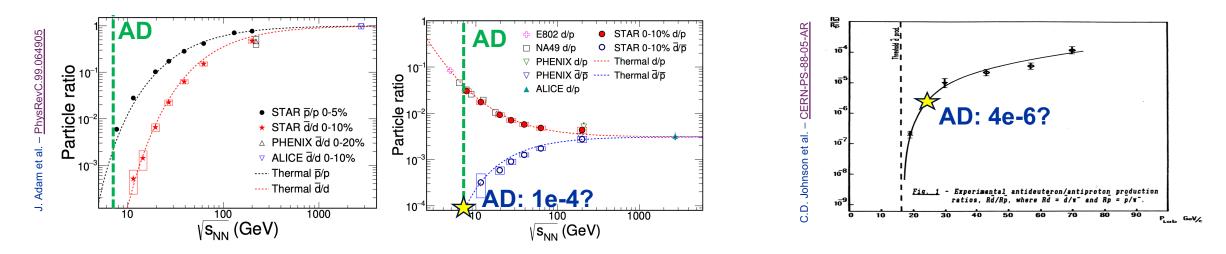
SCIENTIFIC COMMITTEES 2025

JA	ANUARY				F	FEBRUARY							MARCH						APRIL							MAY						JUNE									
М	Т	W	Т	F	S	S	Μ	Т	W	/ 1	Т	F	S	S	Μ	тw	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	т	F	S	S
		1	2	3	4	5							1	2					1	2		1	2	3	4	5	6			_	1	2	3	4							1
6	7	8	9	10		12			_	6	_	7	8	-	-	4 5	6	7	8	9	7	8	9			12		5	6	7	8	9	10	11	_		4	5	6	7	8
13	14	15			18		_		l 12							11 12	_									19		12	13 13	14	15	16	17	18	_		11		_	· · · ·	15
						26	1		_				22		_	18 19						_			25	26	27	19		21	22	23	24	25			_			_	22
27	28	29	30	31			24	25	26	52	27 2	28			-	25 26	27	28	29	30	28	29	30							28				23		24	25	26	27	28	29
															81																				30						
JL	ULY						AUGUST							SEPTEMBER						OCTOBER						NOVEMBER					DECEMBER										
м	т	W	Т	F	S	S	M	Т	W	/ 1	т	F	s	S	M	тw	Т	F	s	S	м	Т	w	Т	F	S	s	Μ	Т	W	т	F	S	S	Μ	т	w	т	F	S	S
	1	2	3	4	5	6	-					1	2		1	2 3	4	5	6	7			1	2	3	4	5						1	2	1	2	3	4	5	6	7
7	8	9	10	11	12	13	4	5	6	-	7	8	9	10	<u>א</u> ⊢	9 10	11	12	13	14	6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14
14	15	16	17	18	19	20	11	. 12	2 13	3 1	.4 :	15	16	17	•	9		12	15	14	13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21
21	22	23	24	25	26	27	18	19	9 20	2	21 2	22	23	24	15	16 <mark>17</mark> 16 17	18	19	20	21	20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28
28	29	30	31				25	26	5 27	72	28 2	29	30	31	22	23 24		26	27	28	27	28	29	30	31			24	25	26	27	28	29	30	29	30	31				
															29	30																									
Exj	oeri	ime	nt Co	mm	iitte	es									Res	esources Council Meetings																									
RB		R (a	esea atten	rch l ded	Boar by C	d (Cl hair	ERN s of I	DG) NTC	C, LH	ICC,	, SPS	SC)			RRB		HC F CERI											SPC	:	Scier (atte					mitto of IN		LHCC	C, SP	SC)		
DR	DC		RDC Г. Ве			tee									SG		HC F A. Fr		urce	s Scr	utiny	7 Gro	up					FC CC		Fina Coui											
INT	C		SOLE M. Pf			TOF	Com	ımit	tee						P2U		TLA S. Na		UG I	Meeti	ngs																				
LH	CC LHC Committee (F. Simon) P2UG CMS P2UG Meetings (M. Demarteau)																	CERN Official Holidays (Thanksgiving 27 November 2025)																							
SPS	SC		PS ai . Nas		S Coi	nmi	ttee																																		
RE	Recognized Experiments Committee (CERN Director for Research)														EP-AGS-SCS 23 May 2024												4 fi														

Timeline for the update of the European Strategy for Particle Physics


Proposed timeline for the European Strategy Update process

From official web page


EDMS 2311633 V3.0

Long Term Schedule for CERN Accelerator complex

What about Antideuteron?

• Maybe possible to have ~10 to ~1000 antideuteron at AD injection already today ?!

- So far, not possible/being able to detect antideuteron in AD ...
 - Informally exploring the feasibility of a single-particle Resonant Schottky detector in AD ...
- Still, assuming they could be decelerated/trapped, would those numbers be interesting?
 - Note: even if dbar found, s-cooling and RF systems will require key modifications to allow deceleration!
- A new target and/or full facility might be required:
 - A question that would need to be addressed to relevant strategic bodies beyond AD/ELENA ...