International Conference on Exotic Atoms and Related Topics and conference on Low Energy Antiprotons (EXA/LEAP 2024) Contribution ID: 119 Type: not specified ## Prospect of hadronic-molecule with strangeness Thursday, 29 August 2024 09:15 (30 minutes) Recently, we conducted a kaonic nuclear-bound state search experiment using a K^- beam (1 GeV/c) bombarding a ${}^3\text{He}$ target. We succeeded in observing a kaonic nuclear quasi-bound state, " K^-pp ", via a nucleon knockout reaction, $K^-N \to \overline{K}n'$, followed by the decay $\overline{K}NN \to \Lambda p(2N_{\overline{K}A})$ in the two-nucleon \overline{K} absorption process, resulting in the final state $\Lambda p + n'$. The result shows that the " K^-pp " binding energy is about 40 MeV below the binding threshold, with a decay width of about 100 MeV. From the Λp decay, the isospin of the system is determined to be $I_{\overline{K}NN} = 1/2$. The momentum transfer distribution of the Λp system is very broad, implying that the size of the " K^-pp " system might be very compact [1, 2]. We extended our study on the kaonic nuclear-bound state in two ways: A) by studying the mesonic decay process of the $\overline{K}NN$ via one-nucleon \overline{K} absorption $(1N_{\overline{K}A}:\overline{K}N\to\pi Y)$, and B) by searching for the $\overline{K}NNN$ bound state through the Λd invariant mass study of the $\Lambda d+n'$ final state with a k^- beam (1 GeV/c) bombarding a 4 He target. The aim of A) is to understand why the decay width of " K^-pp " is about twice as broad as that of $\Lambda(1405)$ (≈ 50 MeV), which is assumed to be a molecule-like hadronic cluster composed of a \overline{K} meson and a nucleon, i.e., $\Lambda(1405) \equiv \overline{K}N$, as introduced by R. H. Dalitz et. al. [3]. The result shows that the $\overline{K}NN\to\pi YN$ decay is dominant $(1N_{\overline{K}A}\gg 2N_{\overline{K}A})$ and that the $\pi\Sigma N$ to $\pi\Lambda N$ ratio is about 1:1, indicating that the $I_{\overline{K}N}=1$ absorption channel is approximately equal to the $I_{\overline{K}N}=0$ channel. The result also suggests that there is a hint of the " \overline{K}^0nn " bound state, a charge mirror state of " K^-pp ", existing in the $\pi^-\Lambda p$ invariant mass spectrum of the $\pi^-\Lambda p+p'$ final state. In the Λd invariant mass study B), the two dimensional preliminary spectrum of the Λd invariant mass and the momentum transfer to Λd ($m_{\Lambda d}, q_{\Lambda d}$) shows an almost identical distribution to ($m_{\Lambda p}, q_{\Lambda p}$), indicating the presence of $\overline{K}NNN$, decaying to Λd . If this is another kaonic nuclear-bound state, then the isospin, spin parity is fixed to be $I(J^P)=0(1/2^-)$. In this talk, we'll describe these two new results on kaonic nuclear-bound states and discuss the prospects of studying the molecule-like hadronic cluster with strangeness. ## References - [1] S. Ajimura et al., Phys. Lett. B 789, 620-625 (2019) - [2] T. Yamaga et al., Phys. Rev. C 102, 044002 (2020) - [3] R.H. Dalitz and S.F. Tuan, Ann. Phys., 3, 307 (1960) - [4] T. Yamaga et al., arXiv:2404.01773 (2024) Primary author: IWASAKI, Masahiko (RIKEN) **Presenter:** IWASAKI, Masahiko (RIKEN)