## International Conference on Exotic Atoms and Related Topics and conference on Low Energy Antiprotons (EXA/LEAP 2024)



Contribution ID: 119 Type: not specified

## Prospect of hadronic-molecule with strangeness

Thursday, 29 August 2024 09:15 (30 minutes)

Recently, we conducted a kaonic nuclear-bound state search experiment using a  $K^-$  beam (1 GeV/c) bombarding a  ${}^3\text{He}$  target. We succeeded in observing a kaonic nuclear quasi-bound state, " $K^-pp$ ", via a nucleon knockout reaction,  $K^-N \to \overline{K}n'$ , followed by the decay  $\overline{K}NN \to \Lambda p(2N_{\overline{K}A})$  in the two-nucleon  $\overline{K}$  absorption process, resulting in the final state  $\Lambda p + n'$ . The result shows that the " $K^-pp$ " binding energy is about 40 MeV below the binding threshold, with a decay width of about 100 MeV. From the  $\Lambda p$  decay, the isospin of the system is determined to be  $I_{\overline{K}NN} = 1/2$ . The momentum transfer distribution of the  $\Lambda p$  system is very broad, implying that the size of the " $K^-pp$ " system might be very compact [1, 2].

We extended our study on the kaonic nuclear-bound state in two ways: A) by studying the mesonic decay process of the  $\overline{K}NN$  via one-nucleon  $\overline{K}$  absorption  $(1N_{\overline{K}A}:\overline{K}N\to\pi Y)$ , and B) by searching for the  $\overline{K}NNN$  bound state through the  $\Lambda d$  invariant mass study of the  $\Lambda d+n'$  final state with a  $k^-$  beam (1 GeV/c) bombarding a  $^4$ He target. The aim of A) is to understand why the decay width of " $K^-pp$ " is about twice as broad as that of  $\Lambda(1405)$  ( $\approx 50$  MeV), which is assumed to be a molecule-like hadronic cluster composed of a  $\overline{K}$  meson and a nucleon, i.e.,  $\Lambda(1405) \equiv \overline{K}N$ , as introduced by R. H. Dalitz et. al. [3]. The result shows that the  $\overline{K}NN\to\pi YN$  decay is dominant  $(1N_{\overline{K}A}\gg 2N_{\overline{K}A})$  and that the  $\pi\Sigma N$  to  $\pi\Lambda N$  ratio is about 1:1, indicating that the  $I_{\overline{K}N}=1$  absorption channel is approximately equal to the  $I_{\overline{K}N}=0$  channel. The result also suggests that there is a hint of the " $\overline{K}^0nn$ " bound state, a charge mirror state of " $K^-pp$ ", existing in the  $\pi^-\Lambda p$  invariant mass spectrum of the  $\pi^-\Lambda p+p'$  final state.

In the  $\Lambda d$  invariant mass study B), the two dimensional preliminary spectrum of the  $\Lambda d$  invariant mass and the momentum transfer to  $\Lambda d$  ( $m_{\Lambda d}, q_{\Lambda d}$ ) shows an almost identical distribution to ( $m_{\Lambda p}, q_{\Lambda p}$ ), indicating the presence of  $\overline{K}NNN$ , decaying to  $\Lambda d$ . If this is another kaonic nuclear-bound state, then the isospin, spin parity is fixed to be  $I(J^P)=0(1/2^-)$ .

In this talk, we'll describe these two new results on kaonic nuclear-bound states and discuss the prospects of studying the molecule-like hadronic cluster with strangeness.

## References

- [1] S. Ajimura et al., Phys. Lett. B 789, 620-625 (2019)
- [2] T. Yamaga et al., Phys. Rev. C 102, 044002 (2020)
- [3] R.H. Dalitz and S.F. Tuan, Ann. Phys., 3, 307 (1960)
- [4] T. Yamaga et al., arXiv:2404.01773 (2024)

Primary author: IWASAKI, Masahiko (RIKEN)

**Presenter:** IWASAKI, Masahiko (RIKEN)