Tesi triennali in Fisica del Neutrino massa del v

Mattia Beretta

Milano-Bicocca, 2024.01.23

Cosa pensiamo di sapere: il Modello Standard

bassa probabilità di interazione

Cosa pensiamo di sapere: il Modello Standard

NEUTRINI $m_v = 0$ Solo interazione debole

bassa probabilità di interazione

Rivelatori dedicati

Energia mancante

Sensibili

Grandi

 $E_{Misurata} = E_{Tot} - E_{\nu}$

Cosa non è incluso: oscillazioni di sapore

Base di *sapore* ≠ Base di *Massa*

i neutrini hanno massa Non sono *standard*

Neutrino: questioni aperte

massa

Quanto vale? Perché è così piccola? Da dove viene?

natura

Come li rappresento?
$$\nu \stackrel{?}{\equiv} \overline{\nu}$$

Тірі

Sono solo 3?

Neutrini non interagenti

Neutrino: questioni aperte

massa

Quanto vale? Perché è così piccola? Da dove viene?

natura

Come li rappresento?
$$\nu \stackrel{?}{\equiv} \overline{\nu}$$

Тірі

Sono solo 3?

Neutrini non interagenti

Misura diretta di m_v: decadimento beta

Misura diretta di m_v: decadimento beta

 $A \rightarrow A' + e^- + \bar{\nu}_e$

Misura diretta di m_v: HOLMES

Esperimento in corso @MiB

micro-calorimetri @ <100 mK Sensori superconduttivi

$\beta \rightarrow$ Cattura e⁻

Misura diretta di m_v: HOLMES

Esperimento in corso @MiB

micro-calorimetri @ <100 mK Sensori superconduttivi

Tesi sperimentali

Tesi analitiche

- Sviluppo sorgente criogenica per calibrazione rivelatori a basse T
- Presa dati per misura di massa del v
- Sviluppo software per analisi e discriminazione pile-up
- Sviluppo software simulazione segnali di micro-calorimetri TES

A. Nucciotti, M. Borghesi, M. Faverzani, E. Ferri, A. Giachero, D. Labranca, L.Origo

Info x tesi: angelo.nucciotti@mib.infn.it marco.faverzani@mib.infn.it

Neutrino: questioni aperte

massa

Quanto vale? Perché è così piccola? Da dove viene?

natura

Come li rappresento? $\nu \stackrel{?}{\equiv} \overline{\nu}$

Тірі

Sono solo 3?

Neutrini non interagenti

Ovvero: la creazione di e⁻ nella materia

Processo standard:

$(A, Z) \rightarrow (A, Z+2) + 2e^{-} + 2\nu$

Ovvero: la creazione di e⁻ nella materia

Ovvero: la creazione di e⁻ nella materia

Somma delle energie dei due elettroni / Q_{Val}

T½ Lunghi Tanti (~ton) nuclei candidati Basso fondo

Ricerca di un picco Risoluzione energetica ~ ‰Q_{Val}

14

Ovvero: la creazione di e⁻ nella materia

Somma delle energie dei due elettroni / Q_{Val}

Rivelatori con molti moduli Analisi dedicate Laboratori sotterranei T½ Lunghi Tanti (~ton) nuclei candidati Basso fondo

Ricerca di un picco Risoluzione energetica ~ ‰Q_{val}

Ricerca del decadimento 0vββ: LEGEND

Ovββ del ⁷⁶Ge @ Gran Sasso Rivelatori al Germanio

Array di HPGe

Veto Attivo scintillante

Ricerca del decadimento 0vββ: LEGEND

Ovββ del ⁷⁶Ge @ Gran Sasso Rivelatori al Germanio

C. Cattadori, T. Tabarelli

Info x tesi: carla.cattadori@lngs.infn.it

- Algoritmi machine learning per identificazione rumore e studio della forma di impulso (MiB)
- Analisi dati da SiPMs per readout luce scintillazione Argon Liquido (MiB)
- Presa dati e preanalisi per LEGEND-200: statistiche e correlazioni multiparametriche (MiB e LNGS)
- Messa in funzione e presa dati di setup per la misura dell'efficienza di rivelazione del LAr neutron tagger (LArATmVeto) (MiB e LNGS).
- Partecipazione a test di qualificazione e accettazione dei nuovi rivelatori Ge per LEGEND-200 presso IRMM (MiB e Geel)

Ricerca del decadimento 0vββ: CUORE e CUPID

Rivelatori termici @ 10mK

Energia dall'aumento di temperatura

0vββ del ¹³⁰Te @ Gran Sasso

988 rivelatori

m³ più freddo dell'universo

In presa dati

Ricerca del decadimento 0vββ: CUORE e CUPID

Rivelatori termici @ 10mK

Energia dall'aumento di temperatura

Tecnologia cresciuta @MiB

 $0\nu\beta\beta$ del ¹³⁰Te @ Gran Sasso

988 rivelatori

m³ più freddo dell'universo

In presa dati

In progettazione

R&D attivo @MiB

Ovββ del ¹⁰⁰Mo Cristalli scintillanti Anche luce!

Ricerca del decadimento 0vββ: CUORE e CUPID

Rivelatori termici @ 10mK

Energia dall'aumento di temperatura

- Sviluppo+test nuovi rivelatori calorimetrici
- Misura contaminazioni radioattive materiali
- Misure γ con HPGe, misure α con rivelatori al Si
- Caratterizzazione risposta rivelatori CUPID
- Modello fondo radioattivo CUORE & previsioni per CUPID
- Calibrazione CUORE: analisi dati & simulazione MC
- Algoritmi Machine Learning per studio pileup e rumore
- Eventi a bassa E: ricerca segnature DM

M. Biassoni, M. Beretta, C. Brofferio, S. Capelli, D. Chiesa, O. Cremonesi, S. Dell'Oro, M. Girola, L. Gironi, I. Nutini, M. Pavan, S. Pozzi, E. Previtali, M. Sisti

Info x tesi: chiara.brofferio@unimib.it, luca.gironi@mib.infn.it

Neutrino: questioni aperte

massa

Quanto vale? Perché è così piccola? Da dove viene?

natura

Come li rappresento?
$$\nu \stackrel{?}{\equiv} \overline{\nu}$$

Tipi

Sono solo 3?

Neutrini non interagenti

Misura diretta di m_v: KATRIN

Decadimento β del ³H Spettrometro _{Guardo attorno a E_{Max}}

Miglior limite su m_v

Strumento unico

TRISTAN DETEKTOR E_e

TRISTAN

- Simulazione MC di KATRIN per fase TRISTAN
- Simulazione per misura spettri β
 - SDD + scintillatore
- Studio sensibilità/analisi dati per TRISTAN
- Misure di Back-scattering
 - Diversa E, angolo e materiali
 - Confronto con simulazioni
- Misura di spettri β con SDD
 - Confronto con simulazioni

M. Biassoni, O. Cremonesi, A. Nava, I. Nutini, M. Pavan, S. Pozzi

Info x tesi: matteo.biassoni@mib.infn.it

Neutrino: questioni aperte

Sviluppo di tecniche con varie applicazioni

spettrometro + rivelatori Superconduttivi

- Studio sensibilità PTOLEMY con approccio bayesiano
- Spettroscopia di elettroni con rivelatori criogenici
- Sviluppo software simulazione segnali di micro-calorimetri TES

A. Nucciotti, M. Borghesi, M. Faverzani, E. Ferri, A. Giachero, D. Labranca, L.Origo

Info x tesi: angelo.nucciotti@mib.infn.it marco.faverzani@mib.infn.it

RES-NOVA

Rivelare neutrini da Supernova usando Pb archeologico

Sviluppare rivelatori criogenici (10 mK) prodotti utilizzando Pb Romano Archeologico

RES-NOVA

Rivelare neutrini da Supernova usando Pb archeologico

Sviluppare rivelatori criogenici (10 mK) prodotti utilizzando Pb Romano Archeologico

Rivelatore di neutrini tradizionale

Water Cherenkov detector

rivelatore di neutrini di RES-NOVA

Archeo-PbWO₄ crystal

RES-NOVA

Rivelare neutrini da Supernova usando Pb archeologico

L. Pattavina, M. Clemenza

Info x tesi: luca.pattavina@unimib.it

Sviluppare rivelatori criogenici (10 mK) prodotti utilizzando Pb Romano Archeologico

Rivelatore di neutrini tradizionale

Water Cherenkov detector

rivelatore di neutrini di RES-NOVA

Archaeo-PbWO₄ crystal

- Caratterizzazione di campioni di Pb Archeologico (HP-Ge, X-ray)
- Misure di attivazione neutronica di campioni di Pb Archeologico
- Studio di attivazione cosmogenica di cristalli di Archeo-PbWO4

Nella pratica: QT nel solco delle particelle

Percorso di laurea dedicato a Tecnologie Quantistiche <u>Laboratorio di stato solido e</u> tecnologie quantistiche

Utilizzo di tecniche della ricerca sulla massa del v

Quantum Computing: dalla ricerca all'applicazione

maggiori dettagli alla presentazione di fisica applicata

Qub-IT: DARTWARS: <u>Simulazioni/algoritmi di QC</u> Dark matter con q-bits Linee SC con alta banda e Utilizzo dei OBit Misura di singoli fotoni rumore quantico Simulazione/modello di Simulazione di QC Simulazione di SC gbit amplificatore Quantum error correction Modello di risposta Quantum machine learning Quantum key distribution Caratterizzazione sperimentale A. Giachero, A. Nucciotti, M. Borghesi, M. Faverzani, E. Ferri, R.Moretti Info x tesi: andrea.giachero@mib.infn.it A. Giachero, A. Nucciotti, M. Borghesi, M. Faverzani, E. Ferri, R.Moretti A. Giachero, P. Govoni, A. Nucciotti, R.Moretti Info x tesi: andrea.giachero@mib.infn.it Microwave cavity Supercondi aubit

Tante attività, per altrettante sfide