
Integrating C++20 Features into the Art Framework
Zachary Evans, ORISE MSIIP Intern with the Art framework group at FNAL
HSF Frameworks Group
25 October 2023



• Faster and/or uses less memory

• More compact code that’s better at representing complex abstractions

• Improves ease of use, user-visible diagnostics

• Easier to maintain codebase

10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework2

Why would we change what works?



• Constraints are logical operations that specify requirements for correct usage of templates

• Concepts are reusable constraints with higher flexibility in terms of compounding constraints 
(“subsummation”)

• More concise and specific diagnostic

• Simpler code: Much much less metaprogramming

• Straightforward template accessibility for users

• Constrain template argument type, member function availability, more

10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework3

Concepts & Constraints

Concept definitions
Using Concepts as Constraints



Invalid substitution set vs Constraint failure

10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework4

Comparison of Diagnostic



• Must be careful to ensure implemented constraints matches 
desired semantics

• Compile-only testing vs runtime testing

• Catch2 for runtime testing of concepts. require() statement and 
nested concepts are great tools for testing constraint enforcement.

• Testing can be difficult with constraints because of syntactic 
evaluation vs actual evaluation.

• You only “need” constraints at the lowest level, but for user-visible 
diagnostic the constraint will sometimes need to be applied at 
higher levels (cf rethrow vs wrap and throw)

• Ran into conflict with ROOT when we implemented constraints into 
something interfaced with a ROOT dictionary (Legacy vs PCM)

10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework5

Practicalities



• Applied Concepts & Constraints to low level utility 
libraries. Have moved on to the “meat” of the 
framework.

• Testing of concepts and constraints needs more 
understanding
– Efficient compile-only tests have framework implications

10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework6

Progress has been made

Selick, Henry. Coraline. Focus Features, 2009.



• Art is already using Range-v3 in specific scenarios
– https://github.com/ericniebler/range-v3

• C++23 is necessary to fully adopt std::ranges
– C++20 is missing ranges::to() and useful treatment of ranges 

over const values

• Until C++23 is available, we’ll continue using Range-v3

10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework7

Ranges

https://en.cppreference.com/w/cpp/ranges



• Scaling!
– Making and using an interlinked set of modules across packages 

causes issues

• Build-system/compiler interactions
– https://nibblestew.blogspot.com/2023/10/the-road-to-hell-is-paved-with-

good.html

– Kind of wants you to do the compilers job for it by knowing where the 
code goes and how before invoking the compiler

• The not-yet-released CMake 3.28 supports modules for Clang 
16 (Sep 2023) and GCC 14 (May 2024)
– https://www.kitware.com/import-cmake-the-experiment-is-over/

• Will revisit this when there’s more community support available

10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework8

Modules

https://nibblestew.blogspot.com/2023/10/the-road-to-hell-is-paved-with-good.html
https://nibblestew.blogspot.com/2023/10/the-road-to-hell-is-paved-with-good.html
https://www.kitware.com/import-cmake-the-experiment-is-over/

