Office of
Science

Integrating C++20 Features into the Art Framework

Zachary Evans, ORISE MSIIP Intern with the Art framework group at FNAL
HSF Frameworks Group
25 October 2023



Why would we change what works?

» Faster and/or uses less memory
« More compact code that’s better at representing complex abstractions
« Improves ease of use, user-visible diagnostics

 Easier to maintain codebase

template <typename T>

> : std::true_ty

concept is_fhicl_sequence =
requires { typename T::fhicl_sequence_tag; };

: std:: true_ty

: std::true_type {};

s_sequence_type_x segquence_type<T>:

/] floating-point

template <class T> template <std::floating_point T=

std::enable_if_t<std::is_floating_point_v<T>>
fhicl::detail::decode(std::any const& a, T& result)
{

1dbl via;

void
fhicl::detail::decode(std::any const& a, T& result)

{

1ldbl via;
decode(a, via);
result = via; // boost::numeric_cast<T>(via);

}

decode(a, via);
result = via; // boost::numeric_cast<T>(via);

}

2= Fermilab

2 10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework



Concepts & Constraints
« Constraints are logical operations that specify requirements for correct usage of templates

« Concepts are reusable constraints with higher flexibility in terms of compounding constraints
(“subsummation”)

« More concise and specific diagnostic
« Simpler code: Much much less metaprogramming
« Straightforward template accessibility for users

« Constrain template argument type, member function availability, more

namespace cet::detail {
template <class T>
concept cet_exception =
std::1s_base_of_v<cet::exception, std::remove_reference_t<T>>;:

template <detail::GEtBexceptaon £, class T>
ES&
operator<<(E6& e, T const& t)

{

e.append(t);
return std:: forward<E>(e);

template <typename T>
concept Streamable = requires(std::ostream os, T value) { os << value; };
} /] cet::detail

}

Using Concepts as Constraints

2= Fermilab

Concept definitions

3 10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework



Comparison of Diagnostic

‘int main()’:
no matching function for call to ‘hypot(st

In function
11:13: error:

c/work/cet-is/build/mrk
/home/greenc/work/cet-is/build/mrb-art-3.1
hypot ("lorem"s,

2/srcs/cetlib/cetlib/test/bad_hypot_t.cc
02/srcs/cetlib/cetlib/test/bad_hypot_t

|
In file 1nduded from /home/greenc/work/cet-is/build/mrb-art-
-is/build/mrb-art s/cetlib/
Ty)

t/bad_hypot_t.cc:1
candidate: ‘templa nable_if t

note: template argument deduction/substitution fail
In file included from 1.0/bits/stl_pair.h:60,
from g .10-2.17/include/c++/13.1.0/bits/st1_algobase.h:64,
from /sc nh/pmdurt y +/13.1.0/bits/specfun.h:4
from /scratch/products/gcc LL 170/Linux6dbit+3. 17/include/c++/13.1.0/cmath:3716,
from /home. nc/work/cet-is/build/mrh t-3.1 Lcetlib/cetlib/ t.h:10:
/scratch/products/gcc/vi3_1_8/Linux64bit+3,10-2.17/include/c++/13.1. Ur’t,pﬂ traits: In substitution of ‘template<bool
/home/greenc/work/cet-is/build/mrb-art-3.13.02/5 / uired by substitution of ‘template
/home/greenc/work/cet-is/build/mrb-a required from here
ch/products/gcc/v13_1_6/Linux .17/ 1.0/ t :11: error: no type named ‘type’ in ‘struct std
using enable_

using std:
nable_if |

cetlib/cetlib/t
tlib/cetlil

‘int main()’
no matching function for call to ‘hypot(

/home/greenc/work/cet-1s/build/mrb-art
/home/greenc/work/cet-is/build/mrb-art
1] cet:ihypot("lorem"s, "ipsum"

t/bad_hypot_ In function
t/bad_hypot_t 1:13: erro

In file included from /home/gr
/greenc/work/cet-is/build/mrb-art
inline T ce hypot(T x, T y)

k/cet- b/L-ulld /mrb-ar

build/mrb-art-summer/srcs/cetlib/cetlib/test/bad_hypot_t.cc

ummer/srcs/cetlib/cetlib/hypot.h:65:10: note: candidate requires is_arithmetic<

ummer/srcs/cetlib/cetlib/hypot.h:65:10: note: template argument deduction/substitution failed:

work, summer/srcs/cetlib/cetlib/hypot.h:65:10: note: constraints not satisfied

In file 1ncludad rk/cet-is/build/mrb-art-summer/srcs/cetlib/cetlib/hypot.

/home/g uild/mrb-ar etlib/cetlib/detail/cetlib_cor In substitution of ‘t

/home/greenc/work/cet-is/build/mrb-art-summer/srcs/cetlib/cetlib/test/bad_hy .cc:11:13: required from here
k/cet-is/build/mrb-art-summer/srcs/cetlib/cetlib/detail/cetlib concaptf, 1 equired for the satisfaction of ‘is_ar:
k/cet-is/build/mrb-art-summer/srcs/cetlib/cetlib/detail/cetlib_concepts. the expression ‘is_: <T:

arithmetic = std::is_arithmetic_)

17:1
17:3

Invalid substitution set vs Constraint failure

4 10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework

hypot (T, T)

sic_string<char

type [with bool
[with T = std:

[with T =

sic_string<char, std traits<char>, std::allocator<char
s:char_traits<c std::allocator<char> >]’

2= Fermilab



Practicalities

* Must be careful to ensure implemented constraints matches
desired semantics

« Compile-only testing vs runtime testing

« Catch2 for runtime testing of concepts. require() statement and
nested concepts are great tools for testing constraint enforcement.

« Testing can be difficult with constraints because of syntactic
evaluation vs actual evaluation.

* You only “need” constraints at the lowest level, but for user-visible
diagnostic the constraint will sometimes need to be applied at
higher levels (cf rethrow vs wrap and throw)

* Ran into conflict with ROOT when we implemented constraints into
something interfaced with a ROOT dictionary (Legacy vs PCM)

2= Fermilab

5 10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework



Progress has been made

» Applied Concepts & Constraints to low level utility
libraries. Have moved on to the “meat” of the
framework.

» Testing of concepts and constraints needs more
understanding

— Efficient compile-only tests have framework implications

Selick, Henry. Coraline. Focus Features, 2009.

2= Fermilab

6 10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework



Range primitives
Defined in header <ranges>

ranges::iterator_t (C++20)

:const_iterator_t (C++23)
(C++20)
(C++23)
(C++20)
(C++20)
(C++20)

ranges:
ranges
ranges
ranges
ranges
ranges
ranges
ranges

ranges: :range_rvalue_reference_t (C++20)
ranges: : range_common_reference_t (C++20)

Dangling iterator handling
Defined in header <ranges>

ranges: :dangling (C++20)

ranges: :borrowed_iterator_t

ranges: :borrowed_subrange_t (Crr20

Range concepts
Defined in header <ranges>

ranges: :range (C++20)

ranges: :borrowed_range (C++20)
ranges: :sized_range (C++20)
ranges: :view (C++20)

ranges: :input_range (C++20)
ranges: :output_range (C++20)

ranges: : forward_range (C++20)

ranges: :bidirectional_range (C++20)

ranges: : random_access_range (C++20)
ranges: :contiguous_range (C++20)
ranges: : common_range (C++20)
ranges: :viewable_range (C++20)

ranges: :constant_range (C++23)

Range conversions
Defined in header <ranges>

ranges: : to (C++23)

obtains associated types of a range
(alias template)

a placeholder type indicating that an iterator or a subrange should
not be returned since it would be dangling
(class)

obtains iterator type or subrange type of a borrowed_range
(alias template)

specifies that a type is a range, that is, it provides a begin iterator
and an end sentinel

(concept)

specifies that a type is a range and iterators obtained from an
expression of it can be safely returned without danger of dangling
(concept)

specifies that a range knows its size in constant time

(concept)

specifies that a range is a view, that is, it has constant time
copy/move/assignment

(concept)

specifies a range whose iterator type satisfies input_iterator
(concept)

specifies a range whose iterator type satisfies output_iterator
(concept)

specifies a range whose iterator type satisfies forward_iterator
(concept)

specifies a range whose iterator type satisfies
bidirectional_iterator

(concept)

specifies a range whose iterator type satisfies
random_access_iterator

(concept)

specifies a range whose iterator type satisfies contiguous_iterator
(concept)

specifies that a range has identical iterator and sentinel types
(concept)

specifies the requirements for a range to be safely convertible to a
view

(concept)

specifies that a range has read-only elements

(concept)

constructs a new non-view object from an input range
(function template)

https://en.cppreference.com/w/cpp/ranges

7 10/25/2023

Art is already using Range-v3 in specific scenarios

— https://github.com/ericniebler/range-v3

C++23 is necessary to fully adopt std::ranges

— C++20 is missing ranges::to() and useful treatment of ranges

over const values

Until C++23 is available, we’ll continue using Range-v3

Zachary Evans | Integrating C++20 Features into the Art Framework

2= Fermilab



Modules

Sunday, October 15, 2023

The road to hell is paved with good intentions and C++
modules

The major C++ compilers are starting to ship modules implementations so | figured 'd add more

support for those in Meson. That resulted in this blog post. It will not be pleasant or fun. Should

you choose to read it, you might want to keep your emergency kitten image image reserve close

at hand

import CMake; the Experiment is Over!

) October 18,2023 & Bill Hoffman, Brad King and Ben Boeckel

- canW}—-—— —

Scaling!

— Making and using an interlinked set of modules across packages
causes issues

Build-system/compiler interactions

— https://nibblestew.blogspot.com/2023/10/the-road-to-hell-is-paved-with-
ood.html

— Kind of wants you to do the compilers job for it by knowing where the
code goes and how before invoking the compiler

The not-yet-released CMake 3.28 supports modules for Clang
16 (Sep 2023) and GCC 14 (May 2024)

— https://www.kitware.com/import-cmmake-the-experiment-is-over/

Will revisit this when there’s more community support available

2= Fermilab

8 10/25/2023 Zachary Evans | Integrating C++20 Features into the Art Framework


https://nibblestew.blogspot.com/2023/10/the-road-to-hell-is-paved-with-good.html
https://nibblestew.blogspot.com/2023/10/the-road-to-hell-is-paved-with-good.html
https://www.kitware.com/import-cmake-the-experiment-is-over/

