

Top Quark Measurements at the Tevatron

Yvonne Peters

University of Manchester & Fermilab

The Tevatron

~11fb⁻¹ delivered

>9fb⁻¹ on disk per experiment

The CDF & DØ Detectors

Tracker: Detection and momentum measurement for charged particles

Muon chamber:

Identification and momentum measurement of muons

Calorimeter:

Identification and energy measurement of jets and electrons;

Top: The TevatrOn Particle

Discovered in 1995 by CDF and DØ at Fermilab (with few events)

Top: The TevatrOn Particle

Discovered in 1995 by CDF and DØ at Fermilab (with few events)

Situation today:

1000s of events!

Rediscovered in 2009 in single top production

Since 2010 LHC operating → top quark factory

All we study about the Top

Top mass Top mass difference Top charge Lifetime Top width Production cross section **Production kinematics** W helicity Production via resonance

Branching ratios

|V_{tb}|

Anomalous coupling

New/Rare decays

Spin correlation Charge asymmetry Color Flow

s- & t- channel production, properties and searches in single top events

New particles

Tevatron Legacy! Top mass Top mass difference Top charge Lifetime Top width Tevatron Legacy! Production cross section **Production kinematics** W helicity Production via resonance

Branching ratios

|V_{tb}|

Anomalous coupling

New/Rare decays

Spin correlation Charge asymmetry Color Flow

s- & t- channel production, properties and searches in single top events

New particles

Tevatron Legacy! (Still) competitive to LHC! Top mass Top mass difference Branching ratios Top charge $|V_{tb}|$ Lifetime nomalous coupling Top width Not to forget: w/Rare decays New ideas ementary to LHC! Sensitive, new methods → All developed during almost 20 years of top quark physics at the pin correlation Tevatron Legacy Tevatron! harge asymmetry Color Flow Production cross section (Still) competitive to LHC!s- & t- channel production, properties and competitive **Production kinematics** Production via resonance New particles

Outline

Part I: Production

Part II: Properties

Part I: Production

- tt̄ production
- Differential cross section
- Single top production

Top Quark Pair Production

- Via strong interaction
- At the Tevatron:

At LHC: 14 TeV: 10% + 90

7 TeV: 30%

Production cross section (@Tevatron):

approximate NNLO: $\sigma = 7.46^{+0.48}_{-0.67} pb$ @ m_t=172.5GeV

Moch, Uwer, PRD 78, 034003 (2008)

Final States in tt

tt̄→W+bW-b̄: Final states are classified according to W decay

$$B(t\to W^+b)=100\%$$

Top Pair Branching Fractions

pure hadronic:

≥6 jets (2 b-jets)

dilepton:

2 isolated leptons;

High missing E_T

from neutrinos;

2 b-jets

lepton+jets:

1 isolated lepton;

Missing E_T from neutrino;

≥4 jets (2 b-jets)

Cross Section Measurement: Methods

- Use knowledge of signal and background signature to enrich data sample in tt events
- Important tools:
 - B-jet identification
 - Multivariate analysis techniques

Identification of b-Jets

- Important to increase tt purity
- b-hadron: travels some millimeters before it decays
- Neural Network (DØ)
 combines properties of displaced
 tracks and displaced vertices

$\sigma_{t\bar{t}}$ in I+jets

- Split events counting b-jets
 - More b-jets → higher purity

- Construct discriminant
 - Combine variables discriminating signal and background in NN/BDT

$$D0: \quad \sigma = 8.13^{+1.02}_{-0.90}(stat + syst) \ pb$$

$$\sigma = 7.68^{+0.71}_{-0.64}(stat + syst) pb$$

$$CDF: \quad \sigma = 7.22 \pm 0.80 (stat + syst) pb$$

$$\sigma$$
 = 7.52 ± 0.66 (stat + syst) pb

σ_{H} in I+jets: Fancy Extensions

- Combined method: combine b-tag and topological information
 - Use topological discriminant in low purity channels arXiv:1101.0124
- Float systematic uncertainties

$$D0: \quad \sigma = 7.78^{+0.77}_{-0.64}(stat + syst) \ pb$$

CDF:
$$\sigma = 7.64 \pm 0.57 (stat + syst) \pm 0.45 (lumi) pb$$

arXiv:1103.4821

 Reduce luminosity error by taking ratio to Z cross section (for b-tag & topological combined)

CDF: $\sigma = 7.70 \pm 0.52 (stat + syst + theory) pb$

PRL 105:012001,2010

Other Channels & Combination

- \blacksquare Deviation of $\sigma_{t\bar{t}}$ from SM or between channel could indicate new physics
 - Everything consistent with each other and SM prediction
 - Now most measurements systematically limited

tt Differential Cross Section

- Test of perturbative QCD calculations
- Generic probe of non-SM physics
- DØ: top quark p_T
 - Window to heavy-quark production
 - Compare to MC generators

- CDF: invariant tt mass
 - Generic test of SM (e. g. resonances)
 - Calculate consistency with SM

PLB 693, 515 (2010)

Single Top: Cross Section Measurement

Single top quark production via electroweak interaction

Kidonakis, Vogt, PRD 78, 074005 (2008)

- Very challenging:
 - Low signal: similar signature like W+jets!
 - Counting only: Uncertainty on background larger than expected signal
- Use multivariate techniques
 - BDT, Matrix Element, Neural Net, NEAT
- Observation in 2009

arXiv:0908.2171

Single top t-channel

- Measure s- and t-channel simultaneously
 - → no assumption of SM ratio

In agreement with SM prediction

- Train with t-channel as signal and integrate over s-channel: t-channel cross section
- DØ: observation of t-channel

$$D0: \quad \sigma = 2.90 \pm 0.59 (stat + syst) \ pb$$

Part II: Properties

- Mass
- Mass from cross section
- Mass difference
- Width
- W helicity
- Spin correlations
- Color charge asymmetry

Top Quark Mass

- Motivation: free parameter of the SM & constraint on Higgs
- Several methods: Template method, matrix element, etc.
 - Methods also used for other analyses, e. g. W helicity & spin correlations
- Template method: construct mass dependent template, fit to data

Additionally: Take info from W mass to constrain jet energy scale

Top Quark Mass: Matrix Element Method

- Use the full event kinematics → most precise method
- For each event calculate probability to belong to certain top mass

$$P_{sig}(x;m_t) \propto \int PDF x Matrix element x Transfer function$$

- Perform likelihood fit of event probabilities
- Probability dependent on top mass (& JES for in-situ fit)

Top Quark Mass: All Methods & Combinations

Systematics limited!

Main efforts: detailed understanding of systematics

Top Quark Mass: Be aware

- Ongoing discussion: What is theoretical interpretation of the measured parameter?
 - We measure the Monte Carlo top mass parameter
 - Is it the pole mass?
- Alternative method: Extract m_t from cross section measurement
 - Assuming pole or MS mass
 - For parameter in MC
 - For theory calculation
- Pole mass: $m_t = 167.5^{+5.2}_{-4.7} GeV$

- Assuming MS mass leads to ~7GeV smaller value
- World average more compatible with pole mass

arXiv:1104.2887

Top Quark Mass Difference

- Are top and anti-top equally heavy?
 - If not: CPT violation!
- CDF: Using template technique
 - Assume average top mass of 172.5GeV

$$m_{t} - m_{\bar{t}} = -3.3 \pm 1.7 \text{GeV}$$

- DØ: Using Matrix Element technique
 - $P_{sig}(x; m_t, m_{\bar{t}})$ instead of $P_{sig}(x; m_t)$

$$m_{t} - m_{\bar{t}} = 0.8 \pm 2.0 GeV$$

- Statistics limited
- Good agreement with the SM!

Top Quark Width

- Top lifetime ~5x10⁻²⁵s
 Top quark decay width is 1.4 GeV
- Top width determination using I+jets events
- Direct: Reconstruct top mass → fit templates

- Indirect: Extract partial and total width from combination of R measurement and t-channel cross section
 - Partial width from t-channel cross section

$$\Gamma_{t} = \frac{\Gamma(t \to Wb)}{B(t \to Wb)}$$

Most precise determination of top width!

PRL 105 232003

$$\Gamma_{t} = 1.99^{+0.69}_{-0.55} GeV$$

$$\tau_{t} = \frac{1}{\Gamma_{t}} = (3.3^{+1.3}_{-0.9}) \times 10^{-25} s$$

PRL 106, 022001 (2011)

W Helicity in Top Quark Decays

Left handed coupling of W-boson to fermions:
 Not every combination of spin for W and b-quark is allowed

 Measure angle 0* between down-type decay product (lepton, d-, s-quark) of W and top quark in W rest frame

W Helicity in Top Quark Decays

Template method

Fit fraction of f₊, f₋, f₀ templates to data

Matrix element method

- Same method as for mass
- Replace top mass with f₀ & f₁

I+jets and dilepton

Model independent simultaneous fit:

$$f_0 = 0.67 \pm 0.08 \text{ (stat)} \pm 0.07 \text{ (syst)}$$

 $arXiv:1011.6549$
 $f_+ = 0.02 \pm 0.04 \text{ (stat)} \pm 0.03 \text{ (syst)}$

$$f_0 = 0.88 \pm 0.11 \text{ (stat)} \pm 0.06 \text{ (syst)}$$

$$PRL 105, 042002$$
 $f_{\perp} = -0.15 \pm 0.07 \text{ (stat)} \pm 0.06 \text{ (syst)}$

W Helicity in Top Quark Decays

Template method

Fit fraction of f₊, f₋, f₀ templates to data

Matrix element method

- Same method as for mass
- Replace top mass with f₀ & f₁

I+jets and dilepton

Model independent simultaneous fit:

$$f_0 = 0.67 \pm 0.08$$
 (s
 $arXiv:1011.6549$
 $f_{\perp} = 0.02 \pm 0.04$ (s

Not shown: new dilepton result from CDF Working on W helicity Tevatron combination

06 (syst)
PRL 105, 042002
.06 (syst)

tt Spin Correlations

- Top quarks decay before fragmentation
 - Spin information is preserved
- Spin correlation depends on production mode

- We use two methods to explore spin correlations
 - Template based using angular distribution
 - Matrix element based

tt Spin Correlation using Angular Distributions

- Use the angles between decay products and beam axis to analyse spin
 - Dilepton: Angle of (anti)lepton wrt. beam axis in (anti)top rest-frame
- Differential cross section:

$$\frac{1}{\sigma} \frac{d^2 \sigma}{d \cos \theta_1 d \cos \theta_2} = \frac{1}{4} (1 - C \cos \theta_1 \cos \theta_2)$$

- C: spin correlation strength
- NLO SM: C≈0.78

$$C = \frac{N\left(\uparrow\uparrow\right) + N\left(\downarrow\downarrow\right) - N\left(\uparrow\downarrow\right) - N\left(\downarrow\uparrow\right)}{N\left(\uparrow\uparrow\right) + N\left(\downarrow\downarrow\right) + N\left(\downarrow\downarrow\right) + N\left(\uparrow\downarrow\right) + N\left(\downarrow\uparrow\right)}$$

tt Spin Correlations using Angular Distributions

- Three first Run II spin correlation analyses since summer 2009!
- lepton+jets and dilepton results!

CDF:
$$C = 0.72 \pm 0.64 (stat) \pm 0.26 (syst)$$

First extraction of tt spin correlation in I+jets!

L=2.8fb⁻¹

$$CDF: C=0.32^{+0.55}_{-0.78}(stat+syst)$$

$$L=5.4fb^{-1}$$

$$D0: C = 0.10 \pm 0.45 (stat + syst)$$

arXiv:1103.1871

NLO SM: 0.78

Beam basis

Bernreuther et. al, 04

In agreement with SM

Still statistically dominated

First evidence soon?
STAY TUNED!

tt Spin Correlations using Matrix Elements

- Test hypothesis of spin correlation (H=1) versus no correlation (H=0)
- Calculate signal probability P_{sgn} for H=0 and H=1, define discriminator:

$$R = \frac{P_{\text{sgn}}(H=1)}{P_{\text{sgn}}(H=0) + P_{\text{sgn}}(H=1)}$$

- Result of template fit: $f=0.74^{+0.40}_{-0.41}$ (stat+syst) \rightarrow corresponds to C=0.57 \pm 0.31(stat+syst)
- ~30% improved over template method!

First time sensitive to spin correlations!

- LO: No charge asymmetry expected
- NLO QCD: Interference between diagrams
- Tree level and box diagrams:
 - Positive asymmetry
 - Intuitive picture: q' t q t QCD coulomb field of incoming quark repels t to larger, attracting \bar{t} to smaller rapidity q
- Initial and final state radiation:
 - Negative asymmetry
 - Intuitive picture: acceleration of color charge due to gluon radiated from incoming quark biases top quark to backward direction
- Asymmetry sensitive to new physics, but also phase space

- Several asymmetry definitions
 - In tt rest frame:

$$A^{t\bar{t}} = \frac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$$

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) \qquad \Delta y = y_t - y_{\bar{t}}$$

- In lab frame: use rapidity (instead of Δy)
 of hadronic (or leptonic) top
- Requires reconstruction of tt system
 - Kinematic fitter
- We have results in I+jets (CDF & DØ) and dilepton (CDF)

Events

- Theory prediction: We use MC@NLO MC $A^{t\bar{t}}=0.06\pm0.01$ at parton level
- CDF: Unfolding of data with simple matrix inversion (4 bins)

$$A^{t\bar{t}} = 0.158 \pm 0.074$$

arXiv:1101.0034

DØ: no unfolding (yet)

$$A_{obs}^{t\bar{t}} = 0.08 \pm 0.04$$

- to be compared to $A^{t\bar{t}}_{pred} = 0.01 \pm 0.02$
- CDF: Dilepton, unfolded: $A^{t\bar{t}} = 0.42 \pm 0.15 \text{ (stat)} \pm 0.05 \text{ (syst)}$
 - to be compared to A^{tt̄}=0.06±0.01

- Asymmetry depends on several variables
 - Lowest jet momentum, $t\bar{t} p_{T}$, top quark rapidity Δy , $m_{t\bar{t}}$
- CDF: study Δy and $m_{t\bar{t}}$ dependence
 - Split data m_{tt}<450GeV & m_{tt}>450GeV

- $A^{t\bar{t}} = -0.166 \pm 0.146 \pm 0.047$
- Prediction: A^{tt̄}=0.040±0.006

- $A^{t\bar{t}} = 0.475 \pm 0.101 \pm 0.049$
- Prediction: A^{tt̄}=0.088±0.013

Other New Results

- Top charge: Exotic model with top charge -4/3 e could be possible
 - Use I+jets event; extract top charge from lepton charge & jet charge
 - Exclude exotic model at 95% CL
- Color flow: Jets carry color, and are thus color connected to each other

- Pull variable to distinguish singlet from octet
- Use it for new physics searches (e. g. ZH)
- Study color flow in l+jets $t\bar{t}$ events => clean $W \rightarrow jj$ sample
- Result for $f_{\text{Singlet}} = N_{\text{singlet}}/N_{\text{total}} = 0.56\pm0.38(\text{stat+syst})\pm0.19(\text{MC stat})$

Phys. Rev. D 83, 092002 (2011)

First study of color

flow in tt events

The neglected Part III: Searches in the Top Sector

Many sensitive searches: t', Z', W', H⁺, FCNC, boosted top, ttH,...

Summary and Outlook

- Rich top quark program at DØ
 - Precision measurements (cross section, mass)
 - Many new properties analyzed for the first time (e. g. color flow, spin correlation)
 - Sensitive searches, e. g., t', charged Higgs
 - Many analyses complementary to LHC
- Full beauty of top results

DØ: http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html

CDF: http://www-cdf.fnal.gov/physics/new/top/top.html

- Great performance of the Tevatron
 - → More to explore in the top sector
 - → Concentrate on legacy & complementary measurements

Backup

$\sigma_{t\bar{t}}$ in Dilepton

- Very clean channel → use b-jet identification or pure counting
- DØ: Use b-tag NN output as discriminant

 $D0: \quad \sigma = 7.4^{+0.9}_{-0.8}(stat + syst) \ pb$

CDF: $\sigma = 7.25 \pm 0.66 (stat) \pm 0.47 (sys) \pm 0.44 (lumi) pb$

Event selection: Use the signature!

Limit on |V_{tb'}|

- Example for new physics affecting the top width
- Use the total width determination to constrain coupling to a fourth generation b' quark, with $m_{b'} > m_{t} M_{w}$
 - Will only affect the production
 - Low probability density of b' in proton & antiproton
 - Assume $|V_{tb}|^2 + |V_{tb'}|^2 = 1$, $|V_{ts}|$, $|V_{td}| < 1$

First limit on W boson coupling to top and b' quark

$$|V_{tb'}| < 0.63$$
 @ 9

W helicity and anomalous couplings

Form factors f₁^L, f₁^R, f₂^L, f₂^R: Can be extracted in single top channel

- Single top and W helicity measurement:
 - Usage of all applicable top quark measurements

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} V_{tb} (f_1^L P_L + f_1^R P_R) t W_{\mu}^{-}$$

$$- \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu} V_{tb}}{M_W} (f_2^L P_L + f_2^R P_R) t W_{\mu}^{-} + h.c.$$

W helicity: Systematics

Source	Uncertainty (f_+)	$\overline{\text{Uncertainty } (f_0)}$
Jet energy scale	0.007	0.009
Jet energy resolution	0.004	0.009
Jet ID	0.004	0.004
Top quark mass	0.011	0.009
Template statistics	0.012	0.023
$tar{t} \; \mathrm{model}$	0.022	0.033
Background model	0.006	0.017
Heavy flavor fraction	0.011	0.026
b fragmentation	0.000	0.001
PDF	0.000	0.000
Analysis consistency	0.004	0.006
Muon ID	0.003	0.021
Muon trigger	0.004	0.020
Total	0.032	0.060

String Fragmentation Model

- Color string building up between the color connected particles
- Color string has constant energy density (1GeV/fm)

When quark-antiquark pair separates, potential energy in string

increases

- New qq̄ pair can be built out of the vacuum once energy is large enough
- Arise along the lines of color string!
- Alternative hadronization models exist, all having the idea of color connection in common

Feldman & Cousins Limits

- Feldman & Cousins method for calculation of limits:
 - Pseudo-experiments for various true R (R_{true})
 - Number of events is chosen randomly within a Poisson distribution
 - All systematic uncertainties are varied randomly within a Gaussian distribution
 - For each true R one obtains a distribution of measured values
 R_{meas}: normalized distributions are P(R_{meas}|R_{true})
 - Application of the "likelihood ratio ordering":
 - calculation of $r_{likeli}(R_{meas}) = \frac{P(R_{meas} \setminus R_{true})}{P(R_{meas} \setminus R_{best})}$
 - R_{best} : R_{true} for which $P(R_{meas}|R_{true})$ is maximal
 - has to be within the physically allowed region

MANCHESTER 1824

Feldman & Cousins Limits

Color Flow: Toy MC

- Toy MC study of calorimeter effects:
 - Granularity: 0.1x0.1 in e x p towers
- Calorimeter noise floor per cell: 150MeV
 - 500MeV threshold for hadron
- Charged particles with <75MeV are ignored due to being bent by magnetic field
- Energy resolution: MC tower is smeared with 50%/sqrt(E[GeV])
 - Resolution in hadronic calorimeter
- Noise/pile-up: Each MC tower has a chance of 7% to have added noise to it
 - p_T: Exponential distribution around mean 360MeV

Some props: Jet Energy Scale

