

Outline

- Why boosted tops?
 - An introduction
- Boosted top prospects at ATLAS
 - MC studies for resonances (ATL-PHYS-PUB-2010-008, 16/7/10)
- Where we are with current data?
 - Jet substructure (SM note out just today, so plots from Twiki: AtlasPublic/JetEtmissApproved2010JetPropertyPlots, 5/2/11)
 - Resolved ttbar resonances (ATLAS-CONF-2011-070, 6/5/11)
- Conclusion
- Backup
 - CDF boosted top search
 - CMS jet substructure for top-tagging
 - CMS ditop search in 2010 data

What is Boost?

- LHC is a heavy and boosted object factory!
- Sources and reasons:
 - Something heavy (e.g. Z') decays to something lighter (t,W/ Z,H,. . .), which is then naturally boosted
 - A new light particle (H, χ^0, \ldots) emerges more clearly above backgrounds when produced boosted
- Signatures:
 - Merged/collimated decay products, large displaced vertices, ...
- Concerns:
 - Standard algorithms may fail, background estimation

Boosted Objects in the ATLAS Detector

- ATLAS is well-prepared for boosted objects
 - High granularity calorimeter and precision tracking to exploit new techniques for efficient reconstruction
- An interplay between BSM (massive objects) and SM (jet substructure and QCD) groups -> QCD for BSM
- ATLAS has a boosted objects group

Boosted Jet Techniques

- Reminder: ATLAS jet finding default is anti- k_{T} (R=0.4 or 0.6)
 - Infra-red safe and considered robust against noise, etc..
- For a parent with m and p_{T} , merging starts showing at R> $2m/p_{T}$
 - Use jet mass for parent and jet substructure to resolve merging
 - Apply further tagging criteria
- Recombination algorithms favoured for jet substructure
- k_T algorithm:
 - recombination intrinsically ordered in p_T scale:

 $d_{ii} = min(p_{Ti}^2, p_{Ti}^2) * \Delta R_{ii}^2/R^2$

- For subjet analysis, undo last merging:
- Define y-value $y_n = d_{ii} / p_T^2$ (sometimes m²) where d_{ii} is the k_T splitting level from the last (n-th last) merging
- Get the y-scale at which the jet would split into 2 subjets.
- Cambridge/Aachen algorithm (C/A):
 - Similar to k_T but ordering is in angles, not p_T .
 - Clustering stops when all jets separated by a prescribed η - ϕ distance R

K_T jet Cone jet

Boosted Top Quarks

- Top quark plays a special role in many EWSB BSM, due to $m_{top} \sim M_{EWSB}$
- LHC energy and luminosity: physics involving energetic tops in the final state possible
- ~15 % of pp -> tt events has at least one top quark with $p_T > m_{top}$
- At high top p_T , top may get reconstructed as one fat-jet (~75% within dR<0.4 for 1TeV top)

Standard semileptonic ttbar selection

Merged top jet in a single cone

Boosted Top Quarks

- Top quark plays a special role in many EWSB BSM, due to $m_{top} \sim M_{EWSB}$
- LHC energy and luminosity: physics involving energetic tops in the final state possible
- ~15 % of pp -> tt events has at least one top quark with pT > mt
- At high top $p_{\rm T},$ the top may get reconstructed as one fat jet (~75% within dR<0.4 for 1TeV top)

Top-tagging

- Various "top-tagging" techniques developed
- Boost2010 report for a performance comparison of most widelyused taggers and provide benchmarks.
 - Configure a number of popular taggers for optimal hadronic top-tagging performance at given target efficiency

For more on boosted tops, see Boost2010 report arXiv:1012.5412

Top-tagging

- Various "top-tagging" techniques developed
- Boost2010 report for a performance comparison of most widelyused taggers and provide benchmarks.
 - Configure a number of popular taggers for optimal hadronic top-tagging performance at given target efficiency

_		G Sa	lam (<u>(2010)</u>	
đ	Rough		()		
8-		"Extra"	eff.	fake	
t of	[from T&W]	just jet mass		10%	
Ē	Brooijmans '08	3,4 k_t subjets, d_{cut}	45%	5%	
	Thaler & Wang '08	2,3 k_t subjets, z_{cut} + various	40%	5%	
	Kaplan et al. '08	3,4 C/A subjets, $z_{cut} + \theta_h$	40%	1%	
	Ellis et al. '09	C/A pruning	10%	0.05%	
	ATLAS '09	3,4 k_t subjets, d_{cut} MC likelihood	90%	15%	
	Chekanov & P. '10	Jet shapes		10%	
	Almeida et al. '08–'10	Template + shapes	13%	0.02%	
	Plehn et al. '09–'10	C/A MD, θ_h /Dalitz [busy evs, $p_t \sim 300$]	35%	2%	
	0.1 0.2 0.3	0.4 0.5 0.6 0.7			
	efficiency				
	(a) all p_T samples				

For more on boosted tops, see Boost2010 report **arXiv:1012.5412**

Example BSM Boosted Top Quarks

- **Resonance production**
 - KK gluon from RS ED(M < 4 TeV) -
 - advantage due to higher rates from strong coupling : σ =O(10pb), for $M_{KKg} = 1 \text{ TeV}$
 - enhanced BR to tops → source of boosted tops
 - Broad resonances (width ~20% of mass)

Les Houches 2009 BSM review arXiv:1005.1229

Also single t production with t,b,g ... association from W', excited strings, technicolor, ...

18/5/2011

Resonances in semileptonic ditops - I (ATL-PHYS-PUB-2010-008)

- Here, concentrate on mono-jets, expected at M_{ditop} > 1.5 TeV
- Resonance signals $(1 \le M \le 2 \text{ TeV})$:
 - Z': narrow, spin 1, colour singlet
 - RS graviton: narrow, spin 2, colour singlet
 - RS gluon: wide, spin 1, colour octet
- Use "top-tagging" for background discrimination
 - Hadronic top: a 3- prong fat jet with substructure
 - Leptonic top: a merged lepton + a b-quark

Resonances in semileptonic ditops - II (ATL-PHYS-PUB-2010-008)

Use a fat "mono-jet" to increase the yield of top quarks and resolution of resonances

Resonances in semileptonic ditops - III (ATL-PHYS-PUB-2010-008)

Hadronic top mono-jet reconstruction

- Anti- k_T jet algorithm (a large jet size of R =1.0)
- Procedure: Start with a fat-jet, split it and explore tagging variables for 3 subjet structure
 - Techniques avoid combinatorics, increase sensitivity and provide good performance down to ~ 1 TeV reach
- Tagging variables used:
 - Q_{jet} : mass of the hadronic top jet
 - z_{cut}: energy sharing between subjects
 - Q_W: invariant mass of the subjet pair with lowest mass, after splitting into 3 subjets

18/5/2011

Resonances in semileptonic ditops - IV (ATL-PHYS-PUB-2010-008)

Leptonic top reconstruction

- Search for a lepton (e or μ) and a jet (b-quark)
- Leptons define the trigger path
- Selection exploring variables for leptonic top structure
- Tagging variables used:
 - Q_{vis} : mass of the leptonic top jet
 - DR (l,j)
 - x_l: invariant mass carried by leptonic activity
 - $\mathbf{z}_{l} = \mathbf{E}_{l} / \mathbf{E}_{j}$
 - iso relative energy in a 0.2 cone around the lepton

15

Boosted Tops at ATLAS

Resonances in semileptonic ditops - V (ATL-PHYS-PUB-2010-008)

Overall efficiency and rejection rates

Signal reconstruction efficiency & (QCD dijet) background rejection (R = 1-e) for hadronic top decay

Resonances in semileptonic ditops - VI

Benchmark signal efficiencies per reconstruction method

Table 5: Expected number of signal and background events, normalised to 200 pb⁻¹ at 10 TeV. Events are counted in a ± 1 RMS range around the reconstructed signal mass peak. Reducible backgrounds include W+jets, Z+jets, single top and QCD di-jet production. For the full reconstruction approach, including b-tagging, the contribution from $Wb\bar{b}$ is taken into account. For the mono-jet approach, single top and Z+jets were ignored after earlier studies established that their contribution is negligible.

	minimal reconstruction				full	mono-jet		
	3-jet	3-jet	4-jet	\geq 5 jets	all	reco.	appro	bach
	low m_j	high m_j					baseline	tight
Z' , $m = 1$ TeV, $\Gamma/m \sim 3.3$ %, $\sigma \times BR(X \rightarrow t\bar{t}) = 0.634$ pb								
tt	322.8	41.3	442.4	215.5	1022	214.3	88.8	29.2
reducible bkg.	858	28	272	59	1217	9.9	22.5	2.8
Z'	4.13	2.26	4.18	1.92	12.5	3.36	6.4	2.9
signal eff.	6.0 %	3.3 %	6.1 %	2.8 %	18.2 %	4.9 %	9.3 %	4.3 %
S/B	0.003	0.033	0.006	0.007	0.006	0.015	0.049	0.091
Z' , $m = 2$ TeV, $\Gamma/m \sim 3.3$ %, $\sigma \times BR(X \to t\bar{t}) = 0.0214$ pb								
$t\overline{t}$	51.2	6.11	38.3	25.3	121	15.6	9.7	4.4
reducible bkg.	278	16.7	66	22.2	394	3.0	14.2	1.6
Z'	0.046	0.14	0.13	0.0825	0.40	0.12	0.36	0.29
signal eff.	2.0 %	6.0 %	5.6 %	3.6 %	17.2 %	5.2 %	15.5 %	12.5 %
S/B	$1.4 imes10$ $^{-4}$	0.006	0.001	0.002	$8 imes 10^{-4}$	0.006	0.015	0.04

Prospective Limits on Z' from ditops (ATL-PHYS-PUB-2010-008)

- New cross section limits for Z'-like resonances ~3 pb for M =1 TeV. Slightly better limits for spin-2 RS KK Gravitons
- A factor of ~2 increased sensitivity with mono-jets wrt minimal (ie no top reconstruction) for M= 2 TeV

Prospective Limits on KK Gluons from ditops

- Exclusion possible with 200 pb⁻¹ @ 10 TeV for KK gluon at ~ 1 TeV mass.
 - compatible with 1 fb⁻¹ @ 7 TeV

M.Karagöz – IoP half-day @ QMUL

ATLAS Jet Substructure Measurements (AtlasPublic/JetEtmissApproved2010JetPropertyPlots)

- Measure mass and substructure related quantities in QCD
- Crucial to get ready for boosted BSM analyses
- Jet mass sensitive to pile up (use track information)

pT ratio of 2nd hardest sub-jet (kT with R=0.3) to the parent jet (anti-kt with R=1.0). Crucial parameter in "pruning".

JVF, agreement with Npv=1 events is < few %

20

- Resolved ditop searches in 2010 data- I (ATLAS-CONF-2011-070)
- ATLAS looked for anomaly in ditop spectrum in 2010 data with 33 pb⁻¹
- Simple whole mass reconstruction from semi-leptonic ditop products
- Follow top observation paper recipe
- ~ 500 events observed
- Highest mass at 1.7 TeV
 - Well above Tevatron
 - Getting into boosted regime!
- Use full shape of mass distribution for limits

Resolved ditop searches in 2010 data- II (ATLAS-CONF-2011-070)

- 95% C.L. Limits ~ 55 pb to 2.2 pb for $m_z = 0.5$ TeV to 1.0 TeV.
- No sensitivity to benchmark leptophobic topcolor Z'
- Exclude m < 2.35 TeV for Quantum black holes
- Will improve with 2011 data (in approval)

A high mass ttbar candidate (boosted)

High-mass event (714 GeV). Decay products collimated due to top quark boosts, but still distinguishable using standard reconstruction algorithms.

Conclusion & Outlook

- LHC energies open up new channels and signatures for BSM with top for which ATLAS has a very rich discovery potential.
- We have been exploiting techniques to efficiently reconstruct boosted tops and other particles
- Estimated prospects for BSM in ditop resonances.
- Looking at data for boosted particle identification and jet substructure to be used in analysis.
- Performed a search for resolved ditop resonances in lepton+jets channel in 33 pb⁻¹. No sensitivity to the leptophobic Z' from topcolor models yet but exclude quantum black holes with m < 2.35 TeV @ 95% C.L.
- Boosted top resonance searches have started. Resolved ditop analysis is being repeated with 2011 data, using > 100 pb⁻¹.

BACKUP

Selection Criteria for boosted ditop search

Table 2: The baseline and tight mono-jet selection. The tight selection does not include the baseline cuts.

selection	leptonic	hadronic	
baseline,	$\Delta R_{lj} < 1, x_l < 1.2, z_l < 0.8$	$z_{12} > 0.08,$	
leading jet	muon: $I_{\mu}^{rel} < 0.5$, $Q_{vis}^{\mu} > 53$ GeV,	$Q_W > 30$ GeV,	
$E_T > 250 \text{ GeV}$	$\Delta R_{\mu j} > 0.15, x_{\mu} > 0.35, z_{\mu} > 0.15,$	$m_j > 100 \text{ GeV}$	
	electron: $I_e^{rel} < 0.1$, $Q_{vis}^e > 50$ GeV,		
	$\Delta R_{ej} > 0.25, x_e > 0.4$		
tight,	$\Delta R_{lj} < 1,$	$z_{12} > 0.06, z_{23} > 0.042,$	
leading jet	$\log y_l > 0$,	$z_{34} > 0.007,$	
$E_T > 250 \text{ GeV}$	$x_l > 0.3$,	$Q_W > 50 \text{ GeV},$	
	$I_{trk}^{mini} > 0.9, I_{calo}^{mini} > 0.8$	$m_j > 140 \text{ GeV}$	

26

Boosted Jets and Tops at CDF

- Boosted top search in high p_T jets in 6 fb⁻¹
- 58 candidate events in a sample when required two massive jets or one massive jet with significant missing transverse energy, with an estimated background of 44 +- 8 (stat) +- 13 (syst) events

(Conf Note 10234)

 $N_{top} > 0$ with $p_T > 400$ GeV, $\sigma < 40$ fb at 95% CL (SM prediction 4.55 fb) A pair of massive objects with $p_T > 400$ GeV, $\sigma < 20$ fb at 95% CL

Boosted Tops at ATLAS 18/5/2011

27

CMS jet substructure for toptagging in 2010 data (CMS PAS JME-10-013)

- Top and W tagging tested on 36 pb⁻¹ of data during 2010.
- Cambridge-Aachen R = 0.8 jets, with 2 decomposition stages and 3 subjet variables for top-tagging.
- Three of two variables are shown

18/5/2011

CMS ditop search in 2010 data

• Search for massive neutral bosons decaying via a top-antitop quark pair based on 36 pb⁻¹ of data during 2010.

- Combined analysis of the muon plus jets and electron plus jets decay modes
- Observed limits range from approximately 25 pb at a Z0 mass of 500 GeV to approximately 7 pb at 1 TeV

18/5/2011

Earlier ATLAS limits on top resonances

- Benchmark limit on narrow Z' ttbar resonance
- Standard M(ttbar) reconstruction in lepton+jets
- Worse sensitivity at higher mass due to drop in reconstruction efficiency
- Using subjet technique, possible to improve the limits at the interesting mass region

Limits for M = 2(3) TeV Z' in 1 fb⁻¹ ~ 550 (160) fb

Boosted Tops at ATLAS

Current status of resonance searches

- no significant deviations from Standard Model prediction
- constraints on leptophobic $Z' \sim 820~{
 m GeV}/c^2$ upper limit @ 95% CL
- \hookrightarrow large center-of-mass energy at LHC will extend Tevatron reach into multi-TeV region

Tools and Techniques: grooming

- Jet substructure is often hidden:
- Soft emissions inside the jet
- Underlying event
- Pile-up*

*Pile-up is identified and (partially) corrected for by associating jets or clusters to tracks and vertices *Jet grooming techniques* to remove the "softest" parts (at large angle) of the jet:

- Filtering: break jet into subjets on angular scale R_{filt}, take n_{filt} hardest subjets Butterworth, Davison, Rubin & Salam '08
- Trimming: break jet into subjets on angular scale R_{trim}, take all subjets with p_{T,sub} > ε_{trim}p_{T,jjet}
 Krohn, Thaler & Wang '09
- ✓ Pruning: as you build up the jet, if the two subjets about to be recombined have R > R_{prune} and min(pt1, pt2) < ε_{prune} (p_{T1} + p_{T2}), discard the softer one. Ellis, Vermilion & Walsh '09

Boost2010 ignored the variable R option

18/5/2011

ATLAS Detector Specifics

air-core toroids w/ muon chambers

Boosted Tops at ATLAS

33

18/5/2011

M.Karagöz – IoP half-day @ QMUL

Modern Calorimeters

- Jets often deposit ~50% of their energy in EM calorimeters
 - ATLAS has most finely segmented EM calorimeter in any hadron collider experiment!
- (CMS has 0.0175 x 0.0175 but onlyone layer)
- Hadron ("tile") calorimeter has Boosted Tops at ATLAS 0.1 x 0.1 segmentation
 - CDF, DØ, H1, ZEUS have 0.05 as finest granularity, mostly 0.1

M Karanöz – InP half-dav @ OMI II

18/5/2011

Comparison of detectors

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner cavity 4 magnets Calorimeters in field-free region	Solenoid Only 1 magnet Calorimeters inside field
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-fiquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segm.
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Cu-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T \sim 7 \%$ at 1 TeV standalone	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

the CMS detector

The Transition Radiation detector (TRT)

The Inner Detector (or inner tracker)

The ID covers : $|\eta| < 2.5$ (2.0 for TRT) with 3 Pixel measurements, 8 SCT and ~30 TRT.

Designed for tracking efficiency >90% (π) and 99% (μ), momentum measurement with $\sigma_{pT}/p_T = 0.05\% p_T \oplus 1\%$ and impact parameter (at high p) = 10 μ m

Immersed in a solenoid field of 2 Tesla measures the trajectories of charged particles.

The ID comprises 3 sub-detectors: (resolution)Pixel :10/115 μm in Rφ/zSilicon strip(SCT):17/580 μmTransition radiation tracker (TRT):130μm in Rφ

18/5/2011 • Boosted Tops at

The calorimeters

Measure the energy deposit (therefore also the eventual inbalance = missing E_T)

Electromagnetic calorimeter (LAr): $\sigma_E/E = 10\%/\sqrt{E} \oplus 0.7\%$

 Precise measurement of the energy deposit of photons and electrons (and hadrons (HEC) outside the acceptance of the Tile)

- coverage |η|< 4.9
- Hadronic calo (Tile):
 - Measurement of energy
 - deposit of hadrons
 - coverage |η|<1.7

$$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$$

The muon spectrometer

Immersed in a toroidal magnetic field of ~ 0.5 T (3x8 superconducting toroids)

Precision measurement chambers and trigger chambers

- MDT (Monitored Drift Tubes)
- RPC (Resistive Plate Ch.)
- CSC (Cathode Strip Chambers)
- TGC (Thin-Gap Chambers)

coverage |η|<2.7

 σ_{p_T}/p_T =10% at p_T = 1 TeV

M.Karagöz – IoP half-day @ QMUL

18/5/2011

Realistic RS Models: Bulk RS

- Current favourite model building in RS
- EWSB with bulk matter fields & KK modes for SM particles
- Solves more than gravity hierarchy problem
 - Gauge hierarchy problem, Fermion mass hierarchy, Gauge Higgs Unification,
- New physics couples with stronger coupling to heavier SM particles (Top, H, V_L)
- Arrange zero modes (couplings) such that
 - Light fermions close to the UV brane to protect precision EW corrections
 - Top (t_R) near IR (TeV) brane (where Higgs resides) in order to produce its observed heavy mass

UV brane

41

ATLAS Jet Measurements (arXiv:1009.5908)

- High p_T jets are observed on a daily basis
- Start to make jet substructure/fat-jet analysis for boosted objects!

Luminosity uncertainty of 11% is not shown.

Dijet inv. Mass used to derive BSM limits 95% CL exclusion for 0.50< mg*< 1.53 TeV