Update on DM t-channel signatures

Luca Panizzi

with embedded contributions by C. Arina, M. Baker, A. Cornell, R. Costa Batalha Pedro and J. Heisig

Motivation

Joint effort TH-EXP to provide guidelines and benchmarks for new analysis during Run 3 and future upgrades

> Coordinators Benjamin Fuks, LP (theory) Benedikt Maier, David Yu (CMS) Rute Pedro, Dominique Trischuk (ATLAS) and 50+ authors

Study of scenarios based on the schematic interaction

Depending on the possibilities:

- Can we observe a signal? And how?
- How does cosmology constrain the parameters?
- How do we reinterpret results?
- Can we define benchmarks for LHC to cover the widest range of possibilities?

Temporary structure

1 Introduction

t-ch	e-channel benchmark models for LHC phenomenology				
2.1	A minimal option				
2.2	Following the path of non-minimality				
2.3	Leptophilic t-channel models				
	2.3.1 Leptophilic Benchmark 1: Muon-philic Model				
	2.3.2 Leptophilic Benchmark 2: Flavour Universal Model				
2.4	Connection between simplified and complete models				
Inte	rplay with cosmology				
Deci	phering first-generation t-channel dark matter signals at hadron colliders				
4.1	A test case study: dark matter couplings with right-handed up quarks				
4.2	Reinterpretation of the results of the LHC				
4.3	Higher-order correction and their impact on the (full) signal				
Flav	oured mediators and dark matter				
5.1	Top-philic dark matter and its connection with flavour physics				
5.2	Boosted top probes of top-philic dark matter				
5.3	Charm-philic dark matter				
5.4	Strange-philic dark matter				
Lep	tophilic dark matter				
Lon	g-lived particle signatures				
7.1	Freeze-out scenarios (WIMP-like)				
7.2	Freeze-in scenarios (FIMP-like)				
Goi	ng beyond the minimal setups				
8.1	Top-philic composite dark matter				
8.2	Frustrated dark matter				
8.3	B-mesogenesis models				
	t-ch 2.1 2.2 2.3 Inte Deci 4.1 4.2 4.3 Flav 5.1 5.2 5.3 5.4 Lep 1.00 7.1 7.2 Goin 8.1 8.2 8.3				

To be reorganized once all contributions are in advanced state

9 Benchmark points

The models

Simplified models suitable for performing MC simulations at NLO in QCD and testing against cosmological observables

Coloured mediators

DMSimpt : A general framework for t-channel dark matter models at NLO in QCD

Contact Information

Benjamin Fuks

LPTHE / Sorbonne U.
 fuks @ lpthe.jussieu.fr

Chiara Arina

UC Louvain
 chiara.arina @ uclouvain.be

Luca Mantani

UC Louvain
 Iuca.mantani @ uclouvain.be

See arXiv:2001.05024 [hep-ph].

Model Description and FeynRules Implementation

We extend the Standard Model by a dark matter candidate X and a coloured mediator Y. The model includ or bosonic dark matter) or 0 (fermionic dark matter). The model Lagrangian is given by

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{\mathrm{kin}} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\bar{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\bar{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\bar{V}) \;.$

The first term consists in the Standard Model Lagrangian, the second one includes gauge-invariant kinetic Dirac fermion, Majorana fermion, complex scalar, real scalar, complex vector and real vector dark matter,

where ϕ and ψ consists in coloured scalar and fermionic mediators

http://feynrules.irmp.ucl.ac.be/wiki/DMsimpt

	Spin	
Mediator	0	1/2
Dark matter	1/2	0 or 1

- DM real or complex
- Couplings with any SM quark
- Restrictions to select representations or coupling hierarchies (only one generation, universal couplings...)

C. Arina, B. Fuks and L. Mantani, Eur. Phys. J. C 80 (2020) no.5, 409, [arXiv:2001.05024 [hep-ph]].

Other models will be used for specific problems (leptophilic DM, multi-component DM...)

Mapping results from simplified models to theoretical scenarios

Cosmology of t-channel DM models

Goals of the section

- Provide a general overview of the cosmology of t-channel models and point to the relevant literature
- Give overview of production mechanisms
- Give overview of main searches for:
- Direct detection
- Indirect detection
- Illustrate cosmological bounds for the models selected in the t-channel paper (minimal model, universal couplings, flavored, leptophilic, ...)
- From parameter space available define viable benchmarks for collider searches

Contributors: C. Arina (section coordinator), M. Becker, E. Coppello, J. Harz, J. Heisig, A. Ibarra, S. Khalil, M. Kirtiman, M. Kraemer, L. Lopez-Honorez, L. Panizzi, D. Sengupta, Y. Sheng, S. Tentori If you are interested in joining please contact Chiara Arina (Chiara.arina@uclouvain.be)

Dark Matter production in the early universe

LO processes + non perturbative corrections (Sommerfeld enhancement + bound states)

Freeze-in, SuperWIMPs achieve relic density via decay of heavy species and provide LLPs signatures also detailed

T-channel white paper - Cosmology section

Dark Matter direct and indirect searches

Indirect detection

In many models LO annihilation is pwave suppressed
NLO processes uplift the suppression and produce a sharp feature in the gamma-ray energy spectrum

T-channel white paper - Cosmology section

Cosmology: current status

The section is divided mainly into two parts

1. general overview of t-channel models concerning

- ✓ production mechanisms in the early universe (freeze-out, freeze-in, conversion driven freeze-out, super wimp) → basically all done
- ✓ addition of non-perturbative corrections such as bound states to the relic density computation (freeze-out, conversion driven cases) → done
- ✓ direct, indirect searches (gamma-rays lines especially) → yet to be written but literature widely available

2. benchmark models

- \checkmark coupling to third generation (b_R , t_R) for Majorana dark matter for all production mechanisms \longrightarrow basically all done
 - u_R case for all DM spin and mediators \longrightarrow to be written but data already available
 - non perturbative corrections for universal case (freeze-out and conversion driven) \longrightarrow writing almost complete
- frustrated DM (see A. Cornell's contribution later) → will be written by the authors, first contact made some time ago

Collider signatures

Which signatures

Not all processes might be possible at tree-level

depending on coupling or mass splitting

Long-lived mediators

Bound states Displaced vertices Delayed jets/photons

BS	F@LHC
LLPs	Prompt/DD
DM	coupling strength

Mediators with prompt decay MET+SM

depending on which SM particle

Interacting with SM gauge bosons (Z/W) or the Higgs boson

Prompt mediator decays

interaction with the up quark

Goals Go beyond existing results 3000 4000 S3M uR Recast of LAS-CONF-2019-04 139/fb S3M up observed limits observed limit at 2σ Breakdown of contributions 3500 XX MA5 recast of CMS-SUS-19-006 2500 XY XX XY YY_M (YY_{ocp} YY_d) ombined XX+XY+YY channels YY(QCD+t+int) 3000 ---· 1σ 2000 fixed ratio F_/M_=5% 2500 $\Gamma_Y/M_Y=5\%$ λ_{e} coupling M_X (GeV) M_X (GeV) 2000 MC events ≥ 100 1500 1500 1000 1000 500 500 2000 2500 3000 3500 4000 500 1000 1500 500 1000 1500 2000 2500 3000 M_V (GeV) M_a (GeV) C. Arina, B. Fuks, Jan Heisig, Michael Krämer, L. Mantani C. Arina, B. Fuks, L. Mantani, H. Mies, LP and J. Salko,

Phys. Lett. B 813 (2021), 136038

C. Arina, B. Fuks, Jan Heisig, Michael Krämer, L. Mantani and LP, arXiv:2307.10367, to appear on PRD

Combination of all channels, relevance of NLO corrections and interference effects

Prompt mediator decays

interaction with the up quark

Goals

- Go beyond existing results
- Identify benchmarks allowed by LHC and cosmology observables

Prompt mediator decays

interaction with the up quark

Goals

- Go beyond existing results
- Identify benchmarks allowed by LHC and cosmology observables

	M_Y	M_X	λ
S3M_uR	3300	2700	4.79563
F3S_uR	3400	2500	4.88088
F3V_uR	3500	1500	1.0066

Store event samples and kinematical distributions for subsequent analyses

Collider: current status

This section requires long simulations but writing will be fast at the end

1. Simulation status (only authors with access to clusters)

- u_R , d_R , c_R , t_R recast done for all simplified scenarios
- \checkmark s_R, b_R in progress
 - MC samples not ready

2. Development of a common simulation framework on condor

O. lorio and A. Cagnotta (CMS)

3. Analysis code for interpretation in general scenarios

bange,ougut	NUTRATIVE Folder	had month
Largir/rapans	weak actions fielder	lasi moni
D grignow	uptera	int wool
D UCIMI	bellat control	lad month
D NOCORDINARY	add quark bop	int wool
D ARADARIAN	educer folk	tal nort
MA5 combi	ne	
MA5_combi	mit of a state for the second of a state of the second of a	thereof ML

A. Desai

Flavoured dark matter

contribution by R. Costa Batalha Pedro

Top-philic Dark Matter

- Models of flavoured DM beyond Minimal Flavour Violation
 - <u>1702.08457</u> <u>1702.08457</u>
 - Flavour carried by the DM candidate and not by the mediator
 - DM is either a Dirac or Majorana fermion
 - Quark-flavoured DM coupling to the SM quarks
 - Lepton-flavoured models may link to the $(g-2)_{\mu}$ anomaly <u>2212.08142</u>

Constrains from LHC for top-philic scenario

- Mainly on mediator pair production
- $tj + \mathcal{E}_T$ and $t\bar{t} + \mathcal{E}_T$ final states (common to searches for SUSY squarks)

Majorana-specific phenomenology

- t-channel ϕ -pair-production leading to same-sign $tt + \mathcal{E}_T$
- Enhanced cross-section at the LHC due to the *up*-quark PDF in the protons

M. Blanke, G. Polesello, H. Acaroglu, M. Krämer

- q_i SM quarks
- χ_j DM fermion, flavoured
- ϕ coloured scalar mediator
- λ flavour-violating coupling matrix

Single top signatures

- Simplified models of top-flavoured Dark Matter
 - <u>2010.10530</u>
 - Within the framework of Minimal Flavour Violation
 - ϕ coloured mediator
 - Right-handed model: couplings to up-type quarks only
 - Left-handed model: couplings to up/down-type quarks (more constrained by flavour physics)

- $t + E_T$
- $tq + \mathbf{E}_{T}$, where $q = \{u, d, s, c\}$
- $tb + E_T$

Charm/strange-philic DM

F. Benoit, A. Diyar, B. Fuks, M. Godsell, F. Parraud, D. Tuckler

Review/draw constrains on charm-flavoured DM

- Limits for the charm-philic model using four jets+MET searches
- Phenomenology investigations of charm tagging
- Similar content for a strange-philic model?

Leptophilic models contribution by M. Baker

Leptophilic Models: Classification

Leptophilic *t*-channel models:

DM **only** couples to SM leptons via a *t*-channel diagram

- DM can couple to RH and/or LH e, μ and/or au
- DM is gauge singlet \implies charged mediator
- Fermionic DM \implies bosonic mediator and vice versa
- DM could be a real or complex scalar, a Majorana or Dirac fermion or a real or complex vector
- The mediator must be complex/Dirac

 $\mathcal{L} \supset y_R^{ij} \phi^j \overline{\chi} \ell_R^i + y_L^{ik} \varphi^k \overline{\chi} L_L^i + h.c.$

Field	$(su(3)_C, su(2)_L, u(1)_Y)$	Spin
ℓ_R	(1, 1, -1)	1/2
L_L	(1,2,-1/2)	1/2
χ	(1, 1, 0)	0, 1/2, 1
ϕ	(1,1,1)	$1/2, \{0,1\},$
φ	(1,2,1/2)	$1/2, \{0,1\},$

Leptophilic Models: Phenomenology

Phenomenology depends on

Mass Regime

- $0.3 \leq \Delta$ Decoupled:
- $0.02 \leq \Delta \leq 0.3$ Coannihilation:
- $\Delta \lesssim 0.02$ Quasi-degenerate:

DM Production Mechanism ($3 \rightarrow 2$ parameters)

- Freeze-out
- Freeze-in
- Other
- Undefined (3 parameters)

DM Particle Identity

- Real scalar and Majorana fermion has velocity suppressed freeze-out, direct detection and indirect detection processes
- Not directly relevant at LHC, but important when comparing with other searches or using production as constraint

Main LHC channel:

Two (SF) OS leptons + MET

(Also one lepton + MET in LH models from $W^{\pm} \rightarrow \phi^0 \phi^{\pm}$)

Mass Regimes: Decoupled: \implies hard leptons Coannihilation: \implies soft leptons (ISR boost?) Quasi-degenerate and small couplings: \implies long-lived mediator

Status

- Classification complete
- Benchmark models defined

• Completing work on combining existing limits and relic surfaces

Long-lived mediators contribution by J. Heisig

Why long-lived particles (LLPs)?

 \Rightarrow LLPs if:

- λ small or/and
- Small mass splitting, in particular: $\Delta m = m_Y m_X < m_{(q)}$

Range of dark matter couplings

Range of dark matter couplings

Range of dark matter couplings

LLP Signatures: light dark matter

(superWIMPs, Freeze-in)

LLP Signatures: small mass splitting

(Conversion FO, Co-annihilation)

p

LLP Signatures: small mass splitting

Closing experimental gaps:

- How far do MET searches cover LLP regime? (transition prompt-LLP)
- How to tackle small mass splittings, i.e. softish displaced objects?

Going beyond the minimal setup contribution by A. Cornell

Subsection 8.1

Top-philic composite dark matter

 Top-philic scalar DM models represent very simple, testable and viable models of WIMP DM:

[S.W. Baek, P. Ko, P. Wu (2016)],[Colucci, Fuks, Giacchino etal. (2018)]

- very few new particles and parameters (one DM scalar *S* and a vector-like fermion mediator *T*),
- renormalizable,
- simple cosmology (thermal relic, standard evolution),
- testable in DM direct detection, indirect detection (photons), and at colliders.
- VLQs which primarily couple to the SM top quark are common in many SM extensions (extra dimensions, little Higgs, twin Higgs, VLQ extensions of SUSY, Composite Higgs Models)
- If S and T are part of a UV completion with additional states/dynamics at typical scale Λ (of a few TeV), integrating out the additional states induces higher-dimensional operators in the top-philic scalar DM Lagrangian.

Sub-section 8.2 Frustrated dark matter models

• All mediator fields couple both to X and to SM fields

carry SM gauge charges that preclude renormalizable gaugeinvariant interactions between the DM and any SM fermion.

Interactions of the DM are *frustrated* in the sense that the specific mediator assignments preclude its tree level interaction with the SM

$$\mathrm{SM} \longleftrightarrow \mathrm{mediators} \left\{ \begin{array}{l} \varphi \ (\mathrm{scalar}) \\ \psi \ (\mathrm{Dirac}) \end{array} \right\} \longleftrightarrow \mathrm{DM} \ \chi_{\mathrm{s}}$$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm med} + \mathcal{L}_{\chi},$$

 $\mathcal{L}_{\rm med} = (D_{\mu}\varphi)^{\dagger s} (D^{\mu}\varphi)_s - m_{\varphi}^2 \varphi^{\dagger s} \varphi_s + \bar{\psi}^s (\mathrm{i} D - m_{\psi}) \psi_s + \mathcal{L}_{\rm decay}$

$$\mathcal{L}_{\chi} = \bar{\chi} (\mathrm{i} \partial \!\!\!/ - m_{\chi}) \chi + y_{\chi} (\varphi^{\dagger s} \bar{\chi} \psi_s + \mathrm{H.c.})$$

Sub-section 8.3 B-mesogenesis models

- Mesogenesis is a recent experimentally testable mechanism of baryogenesis and dark matter production which utilizes CP violation in Standard Model mesons
- In the Mesogenesis mechanism, a scalar field Φ with a mass of 10 to O(100 GeV) decays at a low temperature T_R~O(MeV) to equal numbers quarks and anti-quarks pairs.
- Critical to the setup of these mechanisms is a t-channel coloured scalar mediator which mediates the decays of mesons in to dark sector baryons
- In neutral B mesogenesis, the CP violation of B⁰_{s,d}-B
 ⁰_{s,d} is leveraged

$$\mathcal{L}_Y = \sum_{i,j} Y^* \bar{u}_{i,R} d_{j,R}^c - \sum_k y_{\psi_{\mathcal{B}}k} Y d_{kR}^c \psi_{\mathcal{B}} + \text{h.c.}$$

Conclusion

Work is proceeding on multiple fronts

Tentative timescales of the white paper

- End of the year \rightarrow complete production of numerical data (mostly collider side)
- End of the year / Early January → Advanced draft
- Early 2024 \rightarrow General meeting to finalise writeup

• Spring 2024 \rightarrow Full white paper $\stackrel{6}{\leq}$

