

Search for DM particles produced in association with a dark Higgs boson decaying to two W bosons

Alicia Calderón (IFCA – Univ. Cantabria - CSIC)

Senne Van Putte (Brussel-VUB), Pedro Fernández Manteca (Rice U.),

Tahys Janssen (Antwerpen).

2023 LHC DM WG Autumn Meeting

Work supported by PID2020-113304RB-I00

Dark Higgs model

JHEP 04 (2017) 143

χ

- Simplified model for DM production at the LHC, extends spin-1 mediator models of LHC DM WG
 - Majorana DM (X) interacts with two different mediators:
 - massive vector boson Z' and a dark Higg

Interactions:

$$q$$
 s χ
 q z' χ
 q z' χ

q

SM Quarks
$${\cal L}_{\chi}=-g_q Z'^{\mu} ar q \gamma_{\mu} q$$

Dark Sector
$$\mathcal{L}_{\chi} = -\frac{1}{2}g_{\chi}Z^{\prime\mu}\bar{\chi}\gamma^5\gamma_{\mu}\chi - g_{\chi}\frac{m_{\chi}}{m_{Z^{\prime}}}s\bar{\chi}\chi + 2g_{\chi}Z^{\prime\mu}Z^{\prime}_{\mu}\left(g_{\chi}s^2 + m_{Z^{\prime}}s\right)$$

Model parameters

- Model generation $s \rightarrow WW \rightarrow 2l2\nu / l\nu qq'$ with Madgraph LO:
 - <u>ZpHiggs_UFO</u>
- Parameters and their recommended value from LHC DM WG: <u>https://arxiv.org/abs/1507.00966</u>
 - Small mixing between dark-Higgs (s) and SM Higgs:
 θ = 0.01
 - Dark-sector coupling $g_{\chi} = 1$
 - Quark-*Z*' coupling $g_q = 0.25$
- Analysis mass scan (GeV):
 - $m_{\chi} = [100, 150, 200, 300]$
 - *m_s* = [160, 180, 200, 300, 400]
 - $m_{Z'} = [200 2500]$
- Z' and s bosons widths, relative to their masses, are below 1%.

Analysis selection: $s \rightarrow WW \rightarrow 2l2\nu$

Analysis selection: $s \rightarrow WW \rightarrow 2lqq'$

Background estimation overview

Process	Analysis	Estimation	CR/Validation
Тор	2l2v Ivjj	MC + normalization freely floating, constrained by CR	Invert b-veto
W+jets	lvjj	MC + normalization freely floating, constrained by CR	m _{jj} < 65 m _{jj} > 105 GeV
Non-prompt	2l2v	Fully data-driven estimation	Same lepton charge
	lvjj		m _T (I + MET) < 30 && MET < 30 GeV
WW	2l2v	MC + normalization freely floating, constrained by CR	ΔR(I,I) > 2.5
Drell-Yan	2l2v	MC + normalization freely floating, constrained by CR	m _T (ll + MET) < 50 GeV

* Keeping other preselection requirements

Other small processes estimated directly from simulation: $HWW, V\gamma, V\gamma^*, VZ, VVV$

Analysis strategy

Dilepton channel $s \rightarrow WW \rightarrow 2l2\nu$

- 3D fit in $\Delta R_{ll} m_{ll} m_T(l_2, MET)$
 - 3 SR in ΔR_{ll} (strong dependence with dark Higgs mass)

$\Delta R_{ll} < 1$		
$1 < \Delta R_{ll} < 1.5$		
$1.5 < \Delta R_{ll} < 2.5$		

- For m_{ll} and $m_T(l_2, MET)$ the binning is optimized for $\frac{S}{\sqrt{S+B}}$ shape.
- Allow the different signal mass points to populate the 3D parameter space while using the same background modelling procedure.

$$m_{\mathrm{T}}^{\ell\min,p_{\mathrm{T}}^{\mathrm{min},p_{\mathrm{T}}^{\mathrm{min}}} = \sqrt{2p_{\mathrm{T}}^{\ell\min}p_{\mathrm{T}}^{\mathrm{min}} \left[1 - \cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\ell\min},\vec{p}_{\mathrm{T}}^{\mathrm{min}})\right]},$$

Semileptonic channel $s \rightarrow WW \rightarrow 2lqq'$

- Using BDT Discriminator
- 13 optimized kinematic inputs:
 - mostly sensitive to MET vs visible particles boost.
- 1 training for entire mass range with $m_{Z^{\sim}} \ge 800 \text{ GeV}$ samples (boosted samples with small x-sec sensitivity)
- Binning is optimized for $\frac{S}{\sqrt{S+B}}$ shape.

Results: $s \rightarrow WW \rightarrow 2l2\nu$

- Profile likelihood fit for 3 SR, 1 top quark background CR, 1 DY background CR, and 1 WW background CR
 - Signal regions entering in the fit: 2D histograms of $m_{ll} m_T(l_2, MET)$ for each SR.
 - Control regions information entering in the fit: 1-bin distributions. Top, WW, and DY normalization freely float within the global fit.

Results: $s \rightarrow WW \rightarrow 2lqq'$

- Profile likelihood fit for1 SR, 1 Top quark background CR and 1 W+jets background CR:
 - Signal region information entering in the fit: 1D histograms of BDT output score.
 - Control regions information entering in the fit: 1-bin distributions. Top and W+Jets normalization freely float within the global fit

Alicia Calderon (IF Finer binning in 2017-2018 to squeeze the sensitivity

2310.12229

Results

- Observed > Expected (but still below 2 sigma) due to slight data deficit in some of the sensitive bins.
- Most stringent limits for $m_{\chi} = 150 \text{ GeV}$:
 - $m_{Z'} \sim 2 TeV$ for $m_s = 160 200 GeV$
 - $m_s \sim 300 \ GeV$ for $m_{Z'} = 250 1600 \ GeV$
- $s \rightarrow \chi \chi$ bound reached for $m_s \ge 2m_{\chi}$
- Gray lines indicate where the model parameters produce exactly the current observed relic density.

Results

- The couplings combination adopted so far are excluded by di-jet resonances for a wide range of Z' masses, but similar sensitivity as the mono-jet results.
- Would be good to produce limits on $m_{\chi} m_{Z}$, mass plane and explore the lower coupling parameter region where we 'could' be complementary to di-jet results.

Results

- Comparison with ATLAS results.
- CMS $s \rightarrow b\overline{b}$ on going for $m_s < 160 \text{ GeV}$

Backup

Relic density

- Relic density calculations are performed with the current dark Higgs model assumptions using MadDM
 - C. Arina et al. Eur. Phys. J. C 83 (2023) 241, arXiv:2107.04598.
- Gray lines in the limit figures indicate where the model parameters produce exactly the current measurement of the observed relic density.