Hadronic Mono-W' Probe of Dark Matter at Colliders

Speaker: Kun Cheng (Peking University)
chengkun@pku.edu.cn

arXiv: 2311.13578
R. Holder, J. Reddick, M. Cremonesi, D. Berry,
K. Cheng, M. Low, T. Tait, D. Whiteson
Dark Matter search at Collider

Collider signal of DM: Visible + E_T (Mono-X)

DM interact with SM particles via EFT operator:

\[
\begin{align*}
 g/q + E_T & : 1002.4137, 1108.1196, 1408.3583, 1502.01518 \ldots \\
 t/b + E_T & : 1303.6638, 1410.4031, 1503.00691 \ldots \\
 \gamma + E_T & : 1109.4398, 1410.8812, 1411.1559 \ldots \\
 W/Z + E_T & : 1309.4017, 1408.2745, 1404.005\ldots \\
 h + E_T & : 1312.2592, 1402.7074 \ldots
\end{align*}
\]

When the NP particles are produced on-shell decay to SM particles

\[
\begin{align*}
 Z' + E_T & : 1504.01386 \\
 W' + E_T & : \text{This Work: } W' \rightarrow tb
\end{align*}
\]

W': similar interaction with the SM W boson:
- Resonant production
- Stringent Limits

Standard W' search
Resonant production of W' with a dark Higgs boson

Stringent trigger requirement

$p_T > 500 \text{ GeV}$

Mass region smaller than 1 TeV are not probed

$W' + \text{DM} \quad \text{The channel we are using:}$

$m_{W'} \quad \text{focus on} \quad 250 \sim 1750 \text{ GeV}$

A dark Higgs is emitted from W'

$E_T > 200 \text{ GeV}$

In addition to the DM search, this channel opens up the possibility to push W' searches to lower masses
UV models with W' commonly have a dark Higgs boson

- W' comes from a new gauge symmetry that is broken before EWSB.
- There is new scalar responsible for the breaking: $\phi = h_D + v_\phi$
- The scalar gives W' mass, and couples to W':
 \[\propto g_{new} W'^2 (h_D + v_\phi)^2 \]

Relavent Parameters
- **masses**: $m_{h_D}, m_{W'}$
- W' - t - b: new gauge coupling strength g_{new}
- W' - W' - h_D: new gauge coupling strength and W' mass ($m_{W'} \propto v_\phi$)
Benchmark Model: Left-Right Symmetric Model (LRSM)

\[\mathcal{L} = \frac{g_R}{\sqrt{2}} (\bar{u}_R \gamma^\mu d_R) W^\prime_\mu + h.c., \]

Kinetic terms of fermions

\[Q_{L,i} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}_i : (2, 1, \frac{1}{3}) , \quad Q_{R,i} = \begin{pmatrix} u_R \\ d_R \end{pmatrix}_i : (1, 2, \frac{1}{3}) , \]

Kinetic terms of scalars

\[\mathcal{L}_{W' h_D} = g_R^2 v_R h_D (W'_\mu)^\dagger W'^\mu \]

\[\Delta_R = \begin{pmatrix} \delta_R^+ / \sqrt{2} & \delta_R^{++} \\ \delta_R^{0} & -\delta_R^+ / \sqrt{2} \end{pmatrix} : (1, 3, 2) \]

\[= \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ v_R & 0 \end{pmatrix} + \begin{pmatrix} \vdots & \vdots \end{pmatrix} \]

\[g_R \]	\(> e/c_W(0.35) \)
\[m_{W'} \]	\(\approx g_R v_R / \sqrt{2} \)
\[m_{h_D} \]	Potential parameters
W' Candidate Reconstruction

![Graph showing efficiency vs. W' mass for different processes](image)

<table>
<thead>
<tr>
<th>Process</th>
<th>σ [fb]</th>
<th>ϵ $\times 10^{-3}$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>6.74×10^5</td>
<td>1.42×10^{-3}</td>
<td>2.89 $\times 10^5$</td>
</tr>
<tr>
<td>$Z + b\bar{b}$, $Z \rightarrow \nu\nu$</td>
<td>2.47×10^5</td>
<td>1.42×10^{-4}</td>
<td>10560</td>
</tr>
<tr>
<td>$t\bar{b} + \bar{t}b$</td>
<td>1.00×10^4</td>
<td>2.7×10^{-4}</td>
<td>820</td>
</tr>
<tr>
<td>$W^\pm + b\bar{b}$, $W^\pm \rightarrow \ell^\pm \nu$</td>
<td>1.74×10^5</td>
<td>1.2×10^{-5}</td>
<td>620</td>
</tr>
<tr>
<td>$M_W = 300, M_{h_D} = 10$</td>
<td>2280</td>
<td>0.0016</td>
<td>1060</td>
</tr>
<tr>
<td>$M_W = 800, M_{h_D} = 100$</td>
<td>66</td>
<td>0.056</td>
<td>1120</td>
</tr>
<tr>
<td>$M_W = 1250, M_{h_D} = 250$</td>
<td>16.9</td>
<td>0.129</td>
<td>650</td>
</tr>
</tbody>
</table>

2023 LHC DM WG Autumn Meeting
Kun Cheng
Production cross section

The W' can be on-shell before or after emitting a dark Higgs, and this two channel have comparable contribution

2-body: $pp \rightarrow W'h_D$ then $W' \rightarrow tb$

\[\propto \left(g_R g_{W'W'h}\right)^2 \propto \text{constant} \]

3-body: $pp \rightarrow W'$ then $W' \rightarrow tbh_D$

\[\propto g_R^2 \propto g_{W'W'h}^2 \]

We always have contribution from both channel. $\propto g_R^4$

Which cross section is larger? Only depends on the mass of W' and h_D
Results and Discussion

Current LHC data is sensitive to $W' + h_D$ production in the range of 20 fb to 30 pb. The corresponding limit on g_R can be as low as 0.6

We studied the p_T^{miss} with hadronically-decaying W', which:
- Describes a new search mode of DM
- Expand the W' boson searches to small mass region
FIG. 3: Top (bottom): Distribution of the reconstructed W' boson candidate mass in simulated events with $m'_W = 1000$ (1500) GeV, for each of the three reconstruction strategies (see Fig 2), where the selected objects are angled-matched ($\Delta R < 0.4$) and -unmatched ($\Delta R > 0.4$) to the correct parton-level objects.
Backup: backgrounds

FIG. 5: Top: Distribution of the missing transverse momentum (p_T^{miss}) for the expected background and selected signals normalized to an integrated luminosity of 300 fb$^{-1}$ after all requirements other than $p_T^{\text{miss}} > 200$ GeV are met. Bottom: Distribution of the reconstructed W' boson 2-body candidate mass for the expected background and selected signals normalized to an integrated luminosity of 300 fb$^{-1}$ after the full selection.
FIG. 6: Distribution of the reconstructed W' boson 3-body candidate mass for the expected background and selected signals normalized to an integrated luminosity of 300 fb$^{-1}$ after the full selection.
FIG. 7: Top: Summary of expected upper limits at 95% CL on the $h_D W'$ production cross section and the 2-body decay branching fraction of W' as a function of the W' boson mass normalized to an integrated luminosity of 300 fb$^{-1}$ for three choices of the h_D boson mass. Also shown are expected theoretical cross sections and branching fractions at leading order for a coupling value of $g_R = 0.36$. Bottom: The same distributions as above except for the 3-body decay of the W' boson.