

Assembly and installation of the MVTX silicon vertex detector into the sPHENIX experiment

Walter Sondheim Los Alamos National Laboratory May 29th, 2025

sPHENIX experiment at RHIC

- Collider physics experiment using the RHIC accelerator at BNL, major facility hall;
 - Physics goal take data with P-P and Au-Au collisions at 200 GeV
 - Overall size: length 7556.5 mm, width 7620.0 mm height 7473.0 mm
 - Solenoid magnet coil BABAR experiment, SLAC, 1.4 tesla magnetic field

Engineering challenge; to construct a silicon vertex detector as close as possible to the installed collider Beryllium beampipe and be able to install this detector with the other two tracking detectors in place – the INTT and the TPC

- The MVTX detector will be designed to make use of the same stave/ladders used in the ALICE ITS2 vertex detector.
- Different geometric constraint:

ELEMENTS	ALICE ITS2	sPHENIX MVTX
# Staves, 3 radial layers	48 (inner barrels)	48
Cantilevered Length (support-to- IP)	~1.0 m	~1.8 m
Beampipe radius	19.0 mm	20.76 mm (Be) / 21.7 mm (Al)
Inner Layer LO sensors radius	22.38 mm	23.61 mm
Beampipe clearance (to sensors)	3.38 mm	3.85 mm (Be) / 2.91 mm (Al)
Beampipe clearance (to nose flange)	3.38 mm	2.07 mm (Be) / 1.125 mm (Al)
Primary structural construction	Foam core carbon fiber	Carbon fiber
Detector split configuration	Top / Bottom	Left / Right
Expected total radiation dose	2700 kRad	< 100 kRad

New radial configuration for three layers of staves for the MVTX detector in sPHENIX

5

Modification to ITS2 stave assembly, extended power cable by 40.0 cm, needed because of radial space restriction – INTT for patch panels

With the *tested* extended length of the power cables from the stave we now have a path forward to reduce the diameter of the *patch panels* in the conical region of the MVTX detector

INTT sets the maximum outer diameter for the MVTX

End view with support structure

Section view, lengthwise, inner carbon shell defines outer MVTX envelope

INTT inner carbon tube, the MVTX vertex detector will be designed that the staves center about the IP, 1365.25 mm at a minimum from the insertion end

Conical sections of MVTX needs to have smaller diameter from ALICE ITS2 design

Integration with **INTT** detector prohibited by original larger diameter of conical region:

Thread the needle, integrate the MVTX with the INTT and the beam-pipe

Two layer silicon strip *INTT* detector,, Extension cables go out each end

Three layer *MVTX* detector Extension cables only in *service cylinder*

Los Alamos National Laboratory

Initial CAD model for a half MVTX assembly

Aluminum interconnect patch panel

Proposed MVTX exterior carbon composite structure

Composite fabrication: *Work-shape*, La Roche-de-Glum, France

- Fabricated composite pieces for ALICE ITS2 assembly
- Owner Simon Rubet
- Contract to fabricate all composite pieces and pre-assemblies for the MVTX detector, 26 individual pieces; including end wheels for each of the three layers, CYSS outer shell for the stave assembly, long half service barrel assy.
- Material choice: NGF Granoc; F8A03-1437 fiber with NM31 resin

CYSS indexed end flange

All three layers nestle with in each other using alignment pins and an indexed end flange as a part of the CYSS shell 3D print prototype pieces to verify design will function with routing of service, before finalizing design for fabrication

Layer 0, stave services side

Layer 1, stave services side

Layer 2, stave services side

Work-Shape designs fixtures for composite layups, example LO

Work-Shape aluminum and 3D printed parts for LO stave pass-through and stave signal cable termination interface

Accura25 PP1

Delivery of composite pieces at LBNL from *Work-Shape* for layer assembly

1) Carbon fiber components:

- in hand & meet design specifications/tolerances, verify with CMM.
- Pre-assembled sections bonded using Scotch DP490 epoxy, this includes services supports, patch-panel and support ribs in interior of service barrel.
- Similar bonding of detector layer end assemblies, like the one shown in the upper left picture.
- All bonding was performed at Work-Shape prior to shipping.

Precision machined end wheels to locate staves in each layer

- To simplify each layer assembly a single machined piece was chosen
 - Material 6061 T651 aluminum, anodized, five axis machined, Layer 0 drawings:
 - Staves located using ruby ball in end wheels that aligns with hole and a slot in stave assembly
 - End wheels machined to very tight tolerances

LO South end wheel, sheets 1 & 3

Los Alamos National Laboratory

Fabricated aluminum end wheels prior to final assembly

Locate stave to end wheels;

1.0 mm dia. pin, 3.1 mm dia. ball. Key match pin to hole in end wheel

CMM Study end wheel

Fixtures; critical to the assembly of the three inner layers

• Precision fixtures necessary so the two half detector assemblies come together around the beam-pipe to make 2π coverage.

L0 assembly fixture, used in one of 35 step assembly procedure for just this layer! Using CMM is necessary to verify the dimensional tolerance of a fixture.

Layers LO and L2 in assembly fixture with dummy staves

LO

L2

Mating assembledL2 with service barrel

Half MVTX assembly, three layers with attached services

When you bring the two half detectors, there is the possibility that the FPC extension may come in contact between the two halves instead of leafing between them. We used 3D scans to see if there may be an interference – and if, place strategic spacers to help create adequate gaps so they would not interfere; one half with the other.

5/29/2024

Grounding composite and aluminum pieces in half assembly

- Use POLYTEC, PU1000 conductive glue as an interconnection between all the composite and aluminum pieces, scratch a patch 1 X 2 mm in composite surface
- After application is cured check for continuity –
- The aluminum anodized pieces have a gold chem film applied per MIL DTL 5541F

Stave assemblies have a ground wire incorporated in their assembly, it is brought out through the power connector

MVTX mechanical mock-up, same mass, staves and services

This mechanical mock-up is critical to test installation scenarios, it too would be mounted so the detector is cantilevered from the end flanges of the service barrels. Each half same mass as the MVTX detector – uses ballast blocks:

Integrate the MVTX detector with sPHENIX – X wing

New (Mk8)
Mass: 41 kg
Aluminum with Bronze & Nitronic inserts
Adjustable
No interference – installation bracket can be retracted without any disassembly

X-wing clearance to INTT read-out electronic boards

Cross section through XWing Truss (nearest approach to INTT)

Insertion Mechanism – with X-Y rails, stainless steel table

- Mass of a half MVTX assembly 12.05 kgm
- Installation table aligned to the *X*-wing

8 splice plates lock the two half detector assemblies together from the CYSS to the end of the service barrel.

Insertion mechanism continued, half detector mount

MVTX FEA (Remodel) 2.SLDASM, mesh -

Nose roller ball assembly

Two halves locked together using two M4 flat head screws, access from North end -

Mass values used in FEA calculation of deflection due to gravity

Loads	Value	Туре	Location
Gravity	-9.81 m/s2	Global free body	Everywhere
		Distributed Force, per	
Signal Cables	2226 g	side	SB inside face
		Distributed Force, per	
Power Cables	3612.3 g	side	SB inside face
			CYSS Clamp ring and Nose
LO	261.26 g	Remote mass, per side	Plate
			CYSS Clamp ring and Nose
L1	312.9 g	Remote mass, per side	Plate
			CYSS Clamp ring and Nose
L2	418.9 g	Remote mass, per side	Plate
water 4mm + Air		Distributed Force, per	
Tubes	1122.054 g	side	SB Inside face
Nose rollers	Self weight	Mass	Self

Vertical Displacement with Nose-Ball-Roller assembly

Model name: MVTX FEA (Remodel) 2 Study name: 7(-Default-) Plot type: Static displacement Displacement1 Deformation scale: 100

Min: -0.329

Stress at nose, showing proper contact mesh behavior

Roller Ball Assembly is effective at reducing nose sag

X-wing, insertion table, detector mock-up, test insertion, with dump beam-pipe

X-wing installation on 80-20 rails, connects to inner HCAL

X-wing translates on rails

X-wing attachment to rails, angle bracket

X-wing after installation rails removed

Existing flange in beam-pipe assembly prohibits closure of the two MVTX half detectors until the stave assembly passes this flange

Installation of the MVTX detector

MVTX detector after installation and services connected

MVTX design, fabrication, assembly and installation team:

Walter Sondheim, Christopher O'Shaughnessy, Eric Renner, Jakub Kvapil, Zhaozhong Shi, Ming Liu*, Anton Navazo, Yasser Morales Corrales, Sho Uemura, Alex Tkatchev

MIT:

James Kelsey*, Ross Corliss, Jason Bessuille, Joseph Dodge, Danielle Petterson, Cameron Thomas Dean

BNL:

Dan Cacace, Russell Feder*, Mike Lenz, James Labounty, Richie Ruggiero, Mickey Chiu – sPHENIX integration coordinator

LBNL:

Abdennacer Hamdi, Yu Hu, Ho-San Ko, Richard Lew, Yuan Mei, Grazyna Odyniec*, Hanseul Oh, Joseph Silber, Eric Anderssen

ORNL:

Joe Schambach*

CERN:

Antonello Di Mauro, Corrado Gargiulo

CNRS, France:

Camelia Mironov – project management

********* designates institute PI on this project

Los Alamos National Laboratory

Back up slides:

Detail drawing of stave assembly for ITS2 and MVTX

Fixtures and assembly steps to make a layer assembly, one of six

Rev 10: All bolt holes; dowel holes

Bolted connections included

FEA analysis MVTX attached to X-wing

X-wing FEA with MVTX detector

- Study shown is done with a simplified MVTX model:
 - MVTX with isotropic titanium in place of orthotropic carbon fiber composite
 - Titanium has a similar stiffness to weight ratio, important for s supporting structure
 - it uses 1/8" thick tubes; (final design uses ¼" thick aluminum)
 - Shown maximum deflection is 0.617 mm
- After correcting for thicker tubes and simplified MVTX model, the total Predicted deflection is 0.37 mm at *nose roller* end (nb, clearance to BP ~1.15mm)

MIT, LANL engineers study prototype detector at CERN

Radiation budget for stave assembly, ITS2 and MVTX

Proposed power cable bundle assembly, note they call out 16 wires, only 10 are used, 2 our 16 gauge for digital power and return, 2 our 22 gauge for analog power and return and 6 are 24 gauge wires for sensors, bias and ground.

If we order these cable assemblies we will request they NOT to include the Heat-shrink jacket, we may request the labels.

Fisher panel mount for the end of the stave power cable in PP3, with solder pins, and female sockets for a cable connector.

SAMTEC signal cable assembly from PP1 to PP3, individual wires are 14 gauge Twinax, measure .073 inches in diameter. Approximate diameter of cable bundle 6.5 mm

Composite material data sheets:

Technical Data

PITCH BASED CARBON FIBER Granoc WOVEN FABRIC PREPREG F8001-2437C

		F8O01-2437C
Fabric Type		PF-XN80-240
CF Type		XN-80-30S
CF Tensile Strength	ksi	500
	kgf/mm ²	350
	MPa	3430
CF Tensile Modulus	msi	114
	10 ³ kgf/mm ²	80
	GPa	780
CF Density	g/mm ³	2.17
CF Thermal Conductivity	W/m·K	320
Weaving Structure		Plain
Fiber Areal Weight	g/m²	240
Resin Type		NM31 (Polycyanate resin)
Resin Content	wt%	32
Glass Transfer	<u>کې</u>	188 (cured at 180 deg.C x 2hrs
Temperature	C	246 (post cured at 232 deg.C x 2hrs)
Prepreg Total Weight	g/m ²	353
Prepreg Width	mm	1000

Technical Data NM31

GRANOC Polycyanate Resin NM31 (180 deg.C cure)

Features

- High Tg : 246 deg.C
- > Low outgassing and low moisture absorption
- Toughness

Neat resin physical properties

 Specific gravity 	1.16
--------------------------------------	------

Tg (DSC method)	g.C x 2hrs 32 deg.C x 2hrs							
Moisture absorption	0.4 % (80 deg.C , 80% R)	H, 24Hr)						
Outgas	TML	0.22%						
	CVCM	0.01%						
Flexural properties	Strength	133MPa						
	Modulus	3190MPa						
	Elongation	4.7%						
Shelf life	Refrigeration (-18°C)	About one year						
	Room Temperature (25°C) About one month						
Curing cycle	180 deg.C x 2hrs							

Notes: (1) XN-80 grade is based on coal tar pitch.

Above figures are typical values at room temperature, not guaranteed values.
 These data may be revised if necessary.

NIPPON GRAPHITE FIBER Corp.

 Fuji-cho, Hirohata-ku, Himeji, Hyogo 671-1123 JAPAN TEL +81-79-256-7010 FAX +81-79-237-8427

The Work-Shape Composite lay-up Details:

DRAWING	DESCRIPTION	SUBASSY	MATERIAL	LAYUP PATTERN	PART NOMINAL THICKNESS, mm
MV TX -2-S -00082	MVTX - SB - Cylinder	SB	NGF GRANOC F8A01-2437 C	20 plies, (0°/45°/0°/45°/0°/45°/0°/45°/0 °)s	2.16
MV TX -2-S -00079	MVTX - CYSS - Cylinder	CYSS	NGF GRANOC F8A01-2437 C	10 plies, (0°/45°/0°/45°/0°)s	1.12
MV TX-2-S-00078	MVTX - CYSS - Rib	CYSS	NGF GRANOC F8A01-2437 C	16 plies {(0°/45°/0°/45°)s}s	1.7
	MVTX - CYSS - Cone cone	CYSS	NGF GRANOC F8A01-2437C	20 plies, (0°145°10°145°10°145°10°145°10° °)s	2.16
MV TX -2-S -00077	MVTX - CYSS - Cone cylinder	CYSS	NGF GRANOC F8A01-2437C	20 plies, (0°145°10°145°10°145°10°145°10° °)s	2.16
MV TX -2-S -00054	MVTX - L2 - PP1 Divider	L2	NGF GRANOC F8A01-2437 C	9 plies, (0°/45°/0°/45°/0°/45°/0°)	0.91
MV TX -2-S -00051	MVTX - L2 - Pass Through Divider	L2	NGF GRANOC F8A01-2437 C	9 plies, (0°/45°/0°/45°/0°/45°/0°)	0.91
MV TX -2-S -00050	MVTX - L2 - S. EW - Rib	L2	NGF GRANOC F8A01-2437 C	12 plies, (0°/0°/45°/45°/45°/0°)s	1.33
MV TX -2-S -00049	MVTX - L2 - C Ring	L2	NGF GRANOC F8A01-2437C	15 plies, (0°/45°/0°/45°/0°/45°/0°/45°/0°/4 5°/0°/45°/0°/45°/0°)	1.53
MV TX -2-S -00048	MVTX - L2 - S. EW - Spring	L2	NGF GRANOC F8A01-2437 C	21/6 plies: Full surface (0°/45°/0°)s, then (0°/45°/0°/45°/0°/45°/0°/4 5°/0°/45°/0°/45°/0°)	2,37/0,69
MV TX-2-S-00047	MV TX - L2- S. EW - Cone	L2	NGF GRANOC F8A01-2437 C	10 plies, (0°/45°/0°/45°/0°)s	1.12
MV TX -2-S -00039	MVTX - L1 - PP1 Divider	L1	NGF GRANOC F8A01-2437 C	9 plies, (0°/45°/0°/45°/0°/45°/0°)	0.91
MV TX -2-S -00036	MVTX - L1 - Pass Through Divider	L1	NGF GRANOC F8A01-2437 C	9 plies, (0°/45°/0°/45°/0°/45°/0°)	0.91
MV TX -2-S -00035	MVTX - L1 - S. EW - Rib	L1	NGF GRANOC F8A01-2437 C	12 plies, (0°/0°/45°/45°/45°/0°)s	1.33
MV TX -2-S -00034	MVTX - L1 - C Ring	L1	NGF GRANOC F8A01-2437 C	15 plies, (0°/45°/0°/45°/0°/45°/0°/45°/0°/4 5°/0°/45°/0°/45°/0°)	1.53
MV TX-2-S-00033	MVTX - L1 - S. EW - Spring	L1	NGF GRANOC F8A01-2437 C	18/6 plies: Full surface (0°/45°/0°)s, then (0°/45°/0°/45°/0°/45°)s	1,95/0,62
MV TX -2-S -00032	MV TX - L1- S. EW - Cone	L1	NGF GRANOC F8A01-2437 C	10 plies, (0°/45°/0°/45°/0°)s	1.12
MV TX-2-S-00022	MVTX - L0 - Pass Through Divider	LO	NGF GRANOC F8A01-2437 C	9 plies, (0°/45°/0°/45°/0°/45°/0°)	0.91
MV TX -2-S -00011	MV TX - Divider Mount	L0, L1, L2	NGF GRANOC F8A01-2437 C	3 plies, (45°/0°/45°)	0.3
MV TX -2-S -00009	MVTX - L0 - PP1 Divider	LO	NGF GRANOC F8A01-2437C	9 plies, (0°/45°/0°/45°/0°/45°/0°/45°/0°)	0.91
MV TX -2-S -00008	MVTX - L0 - S. EW - Spring	LO	NGF GRANOC F8A01-2437C	18/6 plies: Full surface (0°/45°/0°)s, then (0°/45°/0°/45°/0°/45°)s	1,95/0,62
MV TX -2-S -00007	MVTX - L0 - C Ring	LO	NGF GRANOC F8A01-2437 C	10 plies, (0°/45°/0°/45°/0°)s	1.12
MV TX -2-S -00006	MVTX - L0 - S. EW - Rib	LO	NGF GRANOC F8A01-2437 C	12 plies, (0°/0°/45°/45°/45°/0°)s	1.33
MV TX -2-S -00005	MV TX - L0 - S. EW - Cone	LO	NGF GRANOC F8A01-2437 C	10 plies, (0°/45°/0°/45°/0°)s	1.12

MVTX composite manufacturing notes, Jason Bessuille, MIT

resin mass fraction in prepreg fiber areal weight

CN series data sheet by analogy to P-55S fibers

by analogy to P-55S fibers

both sides, from LBNL measurements 2013-04-24 with peel-ply

Kollar&Springer. Approx value for structural epoxies

Kollar&Springer. Approx value for structural epoxies

LBNL typical value, based on 2013-04-12 tensile test data

D	rawing Notes which apply to all carbon fiber parts	Estimated laminate	prope	rties	
1	Nominal material for all plies:	Assumed values for manufa	cturing p	roces	5
	a Fiber shall be Granoc CN-80 (or XN-80), tensile modulus 780 GPa.	Mm	32.0%		resin mass fraction in
	b Each ply shall be bidirectional fabric, 240 gsm, plain weave (PF-XN80-240).	FAW	240	gsm	fiber areal weight
	c Resin shall be EX-1515 cyanate ester.	Vv	0.5%		
	d Fiber shall be pre-impregnated with resin (prepreg).				both sides, from LBN
	e Prepreg shall have resin mass fraction 32% ± 2%.	surface texture thickness	70	um	surface
2	Alternative materials:	Estimates of cured plythick	ness and	prepr	eg areal weight
	a Vendor may propose equivalent alternate fiber or resin.	CPT woven	209.2	μm	cure ply thickness
	b Approval of any alternate(s) is entirely at customer's discretion, and shall be made in writing.	PAW	353	gsm	prepreg areal weight
3	Processing	Fiber and Matrix Properties		_	
Ť	a Cured part shall have fiber volume fraction between 50% and 60%	Fiber	CN-80		
	b Cured part shall have void fraction <= 1%	Elf	780	GPa	CN series data sheet
	c Cure temperature shall 121°C for 3 hour minimum hold time (EX-1515)	E2f	8.9	GPa	by analogy to P-55S
	Any alternate resin shall be cured according to resin manufacturer's recommendations. Cure profile	Em	4.4	GPa	Kollar&Springer. App
	d shall be approved by customer in writing.	v12f	0.23		by analogy to P-555
	 Minimum vacuum pressure 25 inHg shall be applied during cure. 	vm	0.35		Kollar&Springer, App
	f Additional autoclave pressure of 40-100 psig is preferred.	of	2.17	g/cm ³	CN series data sheet
	Surface texture for bonded interfaces shall be generated by incorporating peel ply in the vacuum g bag stackup during cure.	pm	1.17	g/cm ³	EX-1515 data sheet
4	Fiber directions, unless otherwise specified on drawings:	G12f	317.1	GPa	
	a 0° direction is parallel to center axis for cylindrical parts.	Gm	1.6	GPa	
	b 0° direction is parallel to longest orthogonal direction for planar parts.	Uni Ply Properties			_
5	Material coupons shall be delivered to customer with parts.	weave stiffness reduction			
	a Coupons shall be laid up and cured alongside / simultaneous to production parts.	factor	5%		LBNL typical value, b
	b Coupons shall be at least 1" wide x 5" long, and of same thickness.	Vf	53.1%		
	c Vendor shall deliver minimum of 2 coupons per unique layup definition.	Vm	46.4%	<u> </u>	<u> </u>
6	Vendor shall deliver the following documentation with parts:	vVf	0.73		
	a Material certifications from fiber and resin manufacturer(s).	E11	395.7	GPa	
	b Measured time, temperature, and vacuum pressure data during cure of all parts.	E22	6.4	GPa	
	c Clear documentation of no loss of vacuum pressure during cure.	G12	5.9	GPa	
	d Measured autoclave pressure data (if applicable).	nu12	0.284		

MVTX-9-R-	00106																
Rev. A				MVTX Composites Manufac	turing	Notes									20	IULY	2020
Assembly	Description	Drawing MVTX-2-5-	Location where layup applies	Comment	no. plies	Thickness (mm)	Layup ND	Layups: Stackup definitions start at inner surface> outer surface									
			most of part	ply drop defined in separate row	10	2.16	A.1	0/90	0/90	0/90	0/90	±45	145	0/90	0/90	0/90	0/90
CYSS	CYSS - Cone	00077	@ 13.4 mm ply drop off	±45 ply shall be on INNER surface	5	1.12	A.Z	drop	drap	drop	drap	drop	145	0/90	0/90	0/90	0/90
CYSS	CYSS - Cylinder	00079	complete part	-	5	1.12	в	0/90	±45	0/90	±45	0/90					
LAYER ONE	L1 - C Ring	00034	complete part	machine chamfer	7	1.53	c	0/90	±45	0/90	±45	0/90	245	0/90			
LAVER ONE	11 - Pass Through Divider	00036	complete part		4	0.91	D	0/90	±45	±45	0/90						
LAYER ONE	L1 - PP1 Divider	00039	complete part		4	0.91	D	0/90	245	±15	0/90						
LAYER ONE	L1 • S. EW • Rib	00035	complete part	vendor may propose laying up to alternate thickness 2.5 mm (i.e. to save a mold)	6	1.33	ε	0/90	±45	0/90	0/90	145	0/90				
LAYER ONE	L1 - S. EW - Spring	00033	complete part	machine step down to 0.5 mm and chamfer	9	1.95	٢	0/90	145	0/90	±45	0/90	145	0/90	±45	0/90	
LAYER ONE	L1- S. EW - Cone	00032	complete part	-	5	1.12	8	0/90	245	0/90	±45	0/90					
LAYER TWO	L2 - C Ring	00049	complete part	machine chamfer	7	1.53	c	0/90	±45	0/90	±45	0/90	145	0/90			
LAYER TWO	L2 - Pass Through Divider	00051	complete part	*	4	0.91	D	0/90	245	±45	0/90			-			
LAYER TWO	L2 - PP1 Divider	00054	complete part	-	4	0.91	D	0/90	145	±45	0/90						
LAYER TWO	L2 - S. EW - Rib	00050	complete part	vendor may propose laying up to alternate thickness 2.5 mm (i.e. to save a mold)	6	1.33	ε	0/90	245	0/90	0/90	±45	0/90				
LAYER TWO	L2 - S. EW - Spring	00048	complete part	machine step down to 0.5 mm and chamfer	11	2.37	6	0/90	±45	0/90	±45	0/90	145	0/90	±45	0/90	0/90
LAYER TWO	L2- S. EW - Cone	00047	complete part	-	5	1.12	8	0/90	145	0/90	±45	0/90					
LAYER ZERO	LO - C Ring	00007	complete part	-	5	1.12	В	0/90	±45	0/90	±45	0/90					
LAYER ZERŐ	LO - Pass Through Divider	00022	complete part		4	0.91	D	0/90	±45	±45	0/90						
LAYER ZERO	LO - PP1 Divider	00009	complete part		4	0.91	D	0/90	±45	±45	0/90						
LAYER ZERO	LO • S. EW • Cone	00005	complete part		5	1.12	В	0/90	±45	0/90	245	0/90					
LAYER ZERO	LO - S. EW - Rib	00006	complete part	vendor may propose laying up to alternate thickness 2.5 mm (i.e. to save a mold)	6	1.33	τ	0/90	245	0/90	0/90	145	0/90				
LAYER ZERO	LO - S. EW - Spring	00008	complete part	machine step down to 0.5 mm and chamfer	9	1.95	F	0/90	±45	0/90	±45	0/90	±45	0/90	±45	0/90	
SERVICE BARREL	58 - Cylinder	00082	complete part	-	10	2.16	A.1	0/90	0/90	0/90	0/90	±45	±45	0/90	0/90	0/90	0/90
Expected t	hickness, including	surface textur															-

e Total storage and out times of prepred prior to cure.

5/29/2024

Pictures at Work-Shape facility, La Roche-de-Glum, France

Simon Rubet, owner

Two half detector assemblies mounted to insertion table

