

Corrugated carbon composite disc design for the ePIC SVT

Nicole Apadula, Eric Anderssen, Jim Curtis, Ernst Sichtermann, Joe Silber

Lawrence Berkeley National Laboratory

Forum on Tracking Detector Mechanics

May 29, 2024

Silicon Vertex Tracker (SVT) Overview

Outer Barrel (OB) Inner Barrel (IB) 84 cm z = 1350 mm z = -1050 mm Electron/Hadron Endcaps (EE, HE)

Target Specifications

• IB

• L0 - L2: 0.05% X/X₀

- OB
 - L3: 0.25% X/X₀
 - L4: 0.55% X/X₀
- Endcaps
 - ED0-4: 0.25% X/X₀
 - HD0-4: 0.25% X/X₀

Towards a disc design

- Double-sided design
 - Overlap to account for inactive areas on sensor (EIC-LAS)
- Needs to be assembled in halves
- Material budget is a concern
 - Want strength without added mass
- Minimal number of module types to simplify production/construction
- Sensor layout varies disc-to-disc
 - Beam pipe separates & widens → Disc inner radius grows with |z|

Left Endcap (LEC): Inactive Area

Region	Disk	z [mm]	inner radius [mm]	outer radius [mm]	X/X0
EE	ED0	-250	36.76	240	0.24 %
	ED1	-450	36.76	415	0.24 %
	ED2	-650	36.76	421.4	0.24 %
	ED3	-850	40	421.4	0.24 %
	ED4	-1050	46.35	421.4	0.24 %

5-6 Repeated Sensor Units (RSUs)

EIC-LAS

Region	Disk	z [mm]	inner radius [mm]	outer radius [mm]	X/X0
HE	HD0	250	36.76	240	0.24 %
	HD1	450	36.76	415	0.24 %
	HD2	700	38.46	421.4	0.24 %
	HD3	1000	53.43	421.4	0.24 %
	HD4	1350	70.14	421.4	0.24 %

Corrugated core

Pitch = 34.77 mm

Overlap along the length axis by alternation

Corrugation pitch and height determine overlap along the short axis \rightarrow Optimization ongoing

Corrugated disc design

- Face sheet constructed out of modules
- Two module types:
 - Belly up (sensor facing outward from corrugation)
 - Belly down (sensor facing inward to corrugation)

Sensor layout

"Front" face of disc (facing in towards interaction region)

Modules

• One sensor glued to a carbon fiber sheet & bonded to an Ancillary ASIC (AncASIC) and Flexible Printed Circuit (FPC)

Module grouping

- Up to four EIC-LAS grouped together
- Reduces services with serial powering and multiplexed slow control
- EIC-LAS bonded to AncASIC and FPC bridge
- Up to four FPC bridges connect to common bus FPC
- Common bus FPC connects to Readout Board up to 40 cm away

Readout boards

First prototype test piece

- 2 layers 34 gsm veil & 5 layers 10 gsm resin
- Face sheet glued with 9309 adhesive in 5 mm strips
- Final size of prototype test piece = 22.4 cm x 20.2 cm
- Final weight of prototype test piece = 22.5 g
- Density = 497 gsm \rightarrow ~0.12% X/X₀

S RF 7.79

First prototype test piece

Air cooling

- Corrugated design provides channels for forced air convection
- Thermal prototype \rightarrow use corrugated test piece
- Heaters with separate zones to mimic sensor power dissipation
 - Left Endcap (LEC): ~1 W/cm²
 - Matrix/RSUs: ~40 mW/cm²
- Heaters attached with 3M 467MP double-sided tape, 60 μ m thick (used for STAR HFT)

- End goal is operation of sensor at/near *room temperature*
- Temperatures measured with thermal camera
- $\Delta T = T_{\text{Heater}} T_{\text{Inlet Air}}$
- "Reasonable" △T is one that achieves room temperature operation with sensible air inlet temperature
 - $\Delta T < 10^{\circ}C$ is used often as a "standard", but is not a requirement

- $\Delta T = T_{\text{Heater}} T_{\text{Inlet Air}}$
- Air cooling sufficient for RSUs
- LEC trending in the right direction

- Add carbon foam to mitigate high power density regions?
- Sensor designers believe the LEC power can be reduced

- Studied a range of LEC power densities
- ΔT reasonable for power < 0.6 W/cm²

- Studied a range of LEC power densities
- ΔT reasonable for power < 0.6 W/cm²
- ΔT scales with power density

- Studied a range of LEC power densities
- ΔT reasonable for power < 0.6 W/cm²
- ΔT scales with power density
- Carbon foam under LEC provides 10-20% reduction in ΔT
 - Caveat: this is insulating foam. Will be measured with thermally conductive foam

Air cooling

Static Temperature of Cooling Channel Outlet at a Velocity of 10 m/s

- Volumetric static temperature of air minimal
 - Air can be used in multiple channels \rightarrow reduces total air volume

Towards a final design

Three connection points per half-disc Outer rails allow for resting points for the discs

Outer gas detector

Natural frequency

Within the ePIC SVT design

Top-down symmetry favors a horizontal segmentation of the discs

Summary

- EIC tracking requirements pose challenges for a low mass, high acceptance tracker
- Developed a double-sided disc design with a corrugated carbon fiber core
 - Sensors in 4 planes (front/back, belly up/down)
 - Provides channel for forced air convection
- First prototype piece made and tested with thermal mock ups of the sensor
- Prototypes with new layups currently being made for thermal and mechanical tests
- Pre-production/construction begins in 2026

